我有以下数据框,我想使用强制转换来创建一个"数据透视表",其中包含两个值(值和百分比)的列.这是数据框:
expensesByMonth <- structure(list(month = c("2012-02-01", "2012-02-01", "2012-02-01",
"2012-02-01", "2012-02-01", "2012-02-01", "2012-02-01", "2012-02-01",
"2012-02-01", "2012-02-01", "2012-02-01", "2012-02-01", "2012-03-01",
"2012-03-01", "2012-03-01", "2012-03-01", "2012-03-01", "2012-03-01",
"2012-03-01", "2012-03-01", "2012-03-01", "2012-03-01", "2012-03-01",
"2012-03-01", "2012-03-01", "2012-03-01", "2012-03-01", "2012-04-01",
"2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01",
"2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01",
"2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01",
"2012-04-01", "2012-04-01", "2012-05-01", "2012-05-01", "2012-05-01",
"2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01",
"2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01",
"2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01",
"2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01",
"2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01",
"2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01",
"2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01",
"2012-07-01", "2012-07-01", "2012-07-01", "2012-07-01", "2012-07-01",
"2012-07-01", "2012-07-01", "2012-07-01", "2012-07-01", "2012-07-01",
"2012-07-01", "2012-07-01", "2012-07-01"),
expense_type = c("Adjustment", "Bank Service Charge", "Cable", "Clubbing", "Dining", "Education",
"Gifts", "Groceries", "Lunch", "Personal Care", "Rent", "Transportation",
"Adjustment", "Bank Service Charge", "Cable", "Clubbing", "Dining",
"Gifts", "Groceries", "Lunch", "Medical Expenses", "Miscellaneous",
"Personal Care", "Phone", "Recreation", "Rent", "Transportation",
"Adjustment", "Bank Service Charge", "Clothes", "Clubbing", "Computer",
"Dining", "Gifts", "Groceries", "Lunch", "Maintenance", "Medical Expenses",
"Miscellaneous", "Personal Care", "Phone", "Recreation", "Rent",
"Transportation", "Travel", "Bank Service Charge", "Cable", "Clothes",
"Clubbing", "Computer", "Dining", "Electric", "Gifts", "Groceries",
"Lunch", "Maintenance", "Medical Expenses", "Miscellaneous",
"Personal Care", "Phone", "Recreation", "Rent", "Transportation",
"Adjustment", "Bank Service Charge", "Cable", "Charity", "Clothes",
"Computer", "Dining", "Education", "Electric", "Gifts", "Groceries",
"Lunch", "Maintenance", "Medical Expenses", "Miscellaneous",
"Personal Care", "Phone", "Recreation", "Rent", "Transportation",
"Computer", "Gifts", "Groceries", "Lunch", "Maintenance", "Medical Expenses",
"Miscellaneous", "Personal Care", "Phone", "Recreation", "Rent",
"Repair and Maintenance", "Transportation"),
value = c(442.37, 200, 21.33, 75, 22.5, 1800, 10, 233.33, 154.75, 30, 545, 32.5,
2, 200, 36.33, 206.55, 74.5, 89, 372.68, 383.75, 144.19, 508.11,
30, 38.4, 81.75, 1746.7, 35, 16.37, 200, 806.9, 324.81, 756,
80.5, 100, 398.37, 326.25, 151, 29.95, 101, 90, 38.45, 61, 743.75,
129, 228.53, 200, 39.05, 237, 40, 283.83, 141.32, 32.88, 30,
424.4, 412, 142.75, 86.55, 1051.5, 30, 38.9, 51.5, 749.7, 35,
10, 200, 16, 32.59, 149.81, 100, 80, 60, 31.91, 55, 397.25, 486.4,
115.6, 47.08, 1000, 120, 41.11, 256, 761.6, 55, 10.54, 10, 342.11,
291, 76.5, 66.8, 1008, 30, 41.11, 316, 765, 65, 62),
percent = c(0.124025030980324, 0.0560729845967511, 0.00598018380724351, 0.0210273692237817,
0.0063082107671345, 0.50465686137076, 0.00280364922983756, 0.0654175474797997,
0.0433864718317362, 0.00841094768951267, 0.152798883026147, 0.00911185999697206,
0.000506462461002391, 0.0506462461002391, 0.00919989060410842,
0.0523049106600219, 0.018865726672339, 0.0225375795146064, 0.0943742149831854,
0.0971774847048337, 0.0365134111259673, 0.128669320529962, 0.00759693691503586,
0.0097240792512459, 0.0207016530934727, 0.442318990316438, 0.00886309306754183,
0.00357276925628781, 0.0436502047194601, 0.176106750940662, 0.0708901149746392,
0.164997773839559, 0.0175692073995827, 0.0218251023597301, 0.0869446602704567,
0.0712043964486193, 0.0329559045631924, 0.00653661815673915,
0.0220433533833274, 0.0196425921237571, 0.00839175185731621,
0.0133133124394353, 0.162324198800492, 0.0281543820440518, 0.0498769064226911,
0.0496724104530621, 0.00969853814096037, 0.0588618063868785,
0.00993448209061241, 0.070492601294463, 0.0350985252261336, 0.0081661442784834,
0.00745086156795931, 0.105404854981398, 0.102325165533308, 0.035453682960873,
0.0214957356235626, 0.261152697956974, 0.00745086156795931, 0.00966128383312057,
0.0127906456916635, 0.186197030583303, 0.00869267182928586, 0.00249044292527426,
0.0498088585054852, 0.00398470868043882, 0.00811635349346881,
0.0373093254635337, 0.0249044292527426, 0.0199235434021941, 0.0149426575516456,
0.00794700337455016, 0.0136974360890084, 0.09893284520652, 0.12113514388534,
0.0287895202161704, 0.0117250052921912, 0.249044292527426, 0.0298853151032911,
0.0102382108658025, 0.0637553388870211, 0.189672133188888, 0.0136974360890084,
0.00341757293956667, 0.0032424790697976, 0.110928451456846, 0.0943561409311103,
0.0248049648839517, 0.021659760186248, 0.326841890235599, 0.00972743720939281,
0.013329831455938, 0.102462338605604, 0.248049648839517, 0.0210761139536844,
0.0201033702327451)),
.Names = c("month", "expense_type", "value", "percent"),
row.names = c(NA, -96L),
class = "data.frame"
)
Run Code Online (Sandbox Code Playgroud)
这就是我想要创建的(当然,使用不同的标题名称,如:[month] _value,[month] _percent):
expenses value percent value.1 percent.1 value.2 percent.2 value.3 percent.3 value.4 percent.4 value.5 percent.5
1 Adjustment 442.37 0.124025031 2.00 0.000506462 16.37 0.003572769 0.00 0.000000000 10.00 0.002490443 0.00 0.000000000
2 Bank Service Charge 200.00 0.056072985 200.00 0.050646246 200.00 0.043650205 200.00 0.049672410 200.00 0.049808859 0.00 0.000000000
3 Cable 21.33 0.005980184 36.33 0.009199891 0.00 0.000000000 39.05 0.009698538 16.00 0.003984709 0.00 0.000000000
4 Charity 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000 32.59 0.008116353 0.00 0.000000000
5 Clothes 0.00 0.000000000 0.00 0.000000000 806.90 0.176106751 237.00 0.058861806 149.81 0.037309325 0.00 0.000000000
6 Clubbing 75.00 0.021027369 206.55 0.052304911 324.81 0.070890115 40.00 0.009934482 0.00 0.000000000 0.00 0.000000000
7 Computer 0.00 0.000000000 0.00 0.000000000 756.00 0.164997774 283.83 0.070492601 100.00 0.024904429 10.54 0.003417573
8 Dining 22.50 0.006308211 74.50 0.018865727 80.50 0.017569207 141.32 0.035098525 80.00 0.019923543 0.00 0.000000000
9 Education 1800.00 0.504656861 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000 60.00 0.014942658 0.00 0.000000000
10 Electric 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000 32.88 0.008166144 31.91 0.007947003 0.00 0.000000000
11 Gifts 10.00 0.002803649 89.00 0.022537580 100.00 0.021825102 30.00 0.007450862 55.00 0.013697436 10.00 0.003242479
12 Groceries 233.33 0.065417547 372.68 0.094374215 398.37 0.086944660 424.40 0.105404855 397.25 0.098932845 342.11 0.110928451
13 Lunch 154.75 0.043386472 383.75 0.097177485 326.25 0.071204396 412.00 0.102325166 486.40 0.121135144 291.00 0.094356141
14 Maintenance 0.00 0.000000000 0.00 0.000000000 151.00 0.032955905 142.75 0.035453683 115.60 0.028789520 76.50 0.024804965
15 Medical Expenses 0.00 0.000000000 144.19 0.036513411 29.95 0.006536618 86.55 0.021495736 47.08 0.011725005 66.80 0.021659760
16 Miscellaneous 0.00 0.000000000 508.11 0.128669321 101.00 0.022043353 1051.50 0.261152698 1000.00 0.249044293 1008.00 0.326841890
17 Personal Care 30.00 0.008410948 30.00 0.007596937 90.00 0.019642592 30.00 0.007450862 120.00 0.029885315 30.00 0.009727437
18 Phone 0.00 0.000000000 38.40 0.009724079 38.45 0.008391752 38.90 0.009661284 41.11 0.010238211 41.11 0.013329831
19 Recreation 0.00 0.000000000 81.75 0.020701653 61.00 0.013313312 51.50 0.012790646 256.00 0.063755339 316.00 0.102462339
20 Rent 545.00 0.152798883 1746.70 0.442318990 743.75 0.162324199 749.70 0.186197031 761.60 0.189672133 765.00 0.248049649
21 Repair and Maintenance 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000 65.00 0.021076114
22 Transportation 32.50 0.009111860 35.00 0.008863093 129.00 0.028154382 35.00 0.008692672 55.00 0.013697436 62.00 0.020103370
23 Travel 0.00 0.000000000 0.00 0.000000000 228.53 0.049876906 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000
Run Code Online (Sandbox Code Playgroud)
在单值列上使用强制转换时,我也遇到了以下错误:它没有考虑"value"参数.因此,即使我指定value ="percent",它仍会显示"value"列中的值.
cast(expensesByMonth, expense_type ~ month, fun.aggregate = sum, value = "percent")
Run Code Online (Sandbox Code Playgroud)
And*_*rie 25
您最好的选择是将数据重新整形为长格式,使用melt
,然后dcast
:
library(reshape2)
meltExpensesByMonth <- melt(expensesByMonth, id.vars=1:2)
dcast(meltExpensesByMonth, expense_type ~ month + variable, fun.aggregate = sum)
Run Code Online (Sandbox Code Playgroud)
前几行输出:
expense_type 2012-02-01_value 2012-02-01_percent 2012-03-01_value 2012-03-01_percent
1 Adjustment 442.37 0.124025031 2.00 0.0005064625
2 Bank Service Charge 200.00 0.056072985 200.00 0.0506462461
3 Cable 21.33 0.005980184 36.33 0.0091998906
4 Charity 0.00 0.000000000 0.00 0.0000000000
Run Code Online (Sandbox Code Playgroud)
Aru*_*run 24
data.table可以转换为多个value.var
变量.这是非常直接(和有效).
因此:
library(data.table) # v1.9.5+
dcast(setDT(expensesByMonth), expense_type ~ month, value.var = c("value", "percent"))
Run Code Online (Sandbox Code Playgroud)
使用pivot_wider()
tidyr 1.0.0 中引入的新功能,现在可以使用多个值/度量列从长格式改造成宽格式。
这是优于先前tidyr策略gather()
比spread()
,因为这些属性不再下降(例如,日期仍日期,字符串保持字符串)。
pivot_wider()
(对应物:)的pivot_longer()
工作原理类似于spread()
. 但是,它提供了附加功能,例如多值列。为此,参数values_from
——指示取值的列——可以采用多个列名。
NA
s 可以使用参数来填充values_fill
。
library("tidyr")
library("magrittr")
pivot_wider(expensesByMonth,
id_cols = expense_type,
names_from = month,
values_from = c(value, percent))
#> # A tibble: 23 x 13
#> expense_type `value_2012-02-~ `value_2012-03-~ `value_2012-04-~
#> <chr> <dbl> <dbl> <dbl>
#> 1 Adjustment 442. 2 16.4
#> 2 Bank Servic~ 200 200 200
#> 3 Cable 21.3 36.3 NA
#> 4 Clubbing 75 207. 325.
#> 5 Dining 22.5 74.5 80.5
#> 6 Education 1800 NA NA
#> 7 Gifts 10 89 100
#> 8 Groceries 233. 373. 398.
#> 9 Lunch 155. 384. 326.
#> 10 Personal Ca~ 30 30 90
#> # ... with 13 more rows, and 9 more variables: `value_2012-05-01` <dbl>,
#> # `value_2012-06-01` <dbl>, `value_2012-07-01` <dbl>,
#> # `percent_2012-02-01` <dbl>, `percent_2012-03-01` <dbl>,
#> # `percent_2012-04-01` <dbl>, `percent_2012-05-01` <dbl>,
#> # `percent_2012-06-01` <dbl>, `percent_2012-07-01` <dbl>
Run Code Online (Sandbox Code Playgroud)
或者,可以使用提供更精细控制的枢轴规范来完成重塑(请参阅下面的链接):
# see also ?build_wider_spec
spec <- expensesByMonth %>%
expand(month, .value = c("percent", "value")) %>%
dplyr::mutate(.name = paste(.$month, .$.value, sep = "_"))
pivot_wider_spec(expensesByMonth, spec = spec)
Run Code Online (Sandbox Code Playgroud)
由reprex 包(v0.2.1)于 2019 年 3 月 26 日创建
另见:https : //tidyr.tidyverse.org/dev/articles/pivot.html
由于这个问题经常被访问,我认为它也值得一个完整的基本 R 答案。reshape
来自基 R的- 函数非常通用,也可以很容易地应用于这个问题:
expenses <- reshape(expensesByMonth, idvar = 'expense_type', direction = 'wide',
timevar = 'month', sep = '_')
Run Code Online (Sandbox Code Playgroud)
带有NA
-values的单元格可以替换0
为:
expenses[is.na(expenses)] <- 0
Run Code Online (Sandbox Code Playgroud)
它给出(按顺序排序expense_type
以更容易与所需的输出进行比较):
Run Code Online (Sandbox Code Playgroud)> expenses[order(expenses$expense_type),] expense_type value_2012-02-01 percent_2012-02-01 value_2012-03-01 percent_2012-03-01 value_2012-04-01 percent_2012-04-01 value_2012-05-01 percent_2012-05-01 value_2012-06-01 percent_2012-06-01 value_2012-07-01 percent_2012-07-01 1 Adjustment 442.37 0.124025031 2.00 0.0005064625 16.37 0.003572769 0.00 0.000000000 10.00 0.002490443 0.00 0.000000000 2 Bank Service Charge 200.00 0.056072985 200.00 0.0506462461 200.00 0.043650205 200.00 0.049672410 200.00 0.049808859 0.00 0.000000000 3 Cable 21.33 0.005980184 36.33 0.0091998906 0.00 0.000000000 39.05 0.009698538 16.00 0.003984709 0.00 0.000000000 67 Charity 0.00 0.000000000 0.00 0.0000000000 0.00 0.000000000 0.00 0.000000000 32.59 0.008116353 0.00 0.000000000 30 Clothes 0.00 0.000000000 0.00 0.0000000000 806.90 0.176106751 237.00 0.058861806 149.81 0.037309325 0.00 0.000000000 4 Clubbing 75.00 0.021027369 206.55 0.0523049107 324.81 0.070890115 40.00 0.009934482 0.00 0.000000000 0.00 0.000000000 32 Computer 0.00 0.000000000 0.00 0.0000000000 756.00 0.164997774 283.83 0.070492601 100.00 0.024904429 10.54 0.003417573 5 Dining 22.50 0.006308211 74.50 0.0188657267 80.50 0.017569207 141.32 0.035098525 80.00 0.019923543 0.00 0.000000000 6 Education 1800.00 0.504656861 0.00 0.0000000000 0.00 0.000000000 0.00 0.000000000 60.00 0.014942658 0.00 0.000000000 52 Electric 0.00 0.000000000 0.00 0.0000000000 0.00 0.000000000 32.88 0.008166144 31.91 0.007947003 0.00 0.000000000 7 Gifts 10.00 0.002803649 89.00 0.0225375795 100.00 0.021825102 30.00 0.007450862 55.00 0.013697436 10.00 0.003242479 8 Groceries 233.33 0.065417547 372.68 0.0943742150 398.37 0.086944660 424.40 0.105404855 397.25 0.098932845 342.11 0.110928451 9 Lunch 154.75 0.043386472 383.75 0.0971774847 326.25 0.071204396 412.00 0.102325166 486.40 0.121135144 291.00 0.094356141 37 Maintenance 0.00 0.000000000 0.00 0.0000000000 151.00 0.032955905 142.75 0.035453683 115.60 0.028789520 76.50 0.024804965 21 Medical Expenses 0.00 0.000000000 144.19 0.0365134111 29.95 0.006536618 86.55 0.021495736 47.08 0.011725005 66.80 0.021659760 22 Miscellaneous 0.00 0.000000000 508.11 0.1286693205 101.00 0.022043353 1051.50 0.261152698 1000.00 0.249044293 1008.00 0.326841890 10 Personal Care 30.00 0.008410948 30.00 0.0075969369 90.00 0.019642592 30.00 0.007450862 120.00 0.029885315 30.00 0.009727437 24 Phone 0.00 0.000000000 38.40 0.0097240793 38.45 0.008391752 38.90 0.009661284 41.11 0.010238211 41.11 0.013329831 25 Recreation 0.00 0.000000000 81.75 0.0207016531 61.00 0.013313312 51.50 0.012790646 256.00 0.063755339 316.00 0.102462339 11 Rent 545.00 0.152798883 1746.70 0.4423189903 743.75 0.162324199 749.70 0.186197031 761.60 0.189672133 765.00 0.248049649 95 Repair and Maintenance 0.00 0.000000000 0.00 0.0000000000 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000 65.00 0.021076114 12 Transportation 32.50 0.009111860 35.00 0.0088630931 129.00 0.028154382 35.00 0.008692672 55.00 0.013697436 62.00 0.020103370 45 Travel 0.00 0.000000000 0.00 0.0000000000 228.53 0.049876906 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000
您也可以通过以下方式实现tidyverse
:
library(dplyr)
library(tidyr)
expensesByMonth %>%
gather(k, v, 3:4) %>%
unite(km, k, month) %>%
spread(km, v, fill = 0)
Run Code Online (Sandbox Code Playgroud)