绘制修改的点和线图 - 变量作为r中的"尖峰"图

jon*_*jon 3 r graph ggplot2

在解释细节之前,这是我的数据:

set.seed (1234) 
datas <- data.frame (Indv = 1:20, Xvar = rnorm (20, 50, 10),
Yvar = rnorm (20, 30,5), Yvar1 = rnorm (20, 10, 2),
Yvar2 = rnorm (20, 5, 1), Yvar3 = rnorm (20, 100, 20),
Yvar4 = rnorm (20, 15, 3))
Run Code Online (Sandbox Code Playgroud)

我想准备一个图形(Metroglymph),它基本上是点图,但是(Xvar和Yvar)点(尖峰(线))从缩放到其余变量(Yvar1,Yvar2,Yvar3,Yvar4)的点开始.每个尖峰都是有序的,最好是彩色编码.

require(ggplot2)
ggplot(datas, aes(x=Xvar, y=Yvar)) +
    geom_point(shape=1, size = 10) + theme_bw()
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

bde*_*est 8

这是一种可能对您有所帮助的方法.它使用stat_spoke()ggplot2.您的每个y变量都会在4次单独调用中映射到辐条半径stat_spoke.

plot_1 = ggplot(datas, aes(x=Xvar, y=Yvar)) +
         stat_spoke(aes(angle=(1/8)*pi, radius=Yvar1), colour="#E41A1C",size=1) +
         stat_spoke(aes(angle=(3/8)*pi, radius=Yvar2), colour="#377EB8",size=1) +
         stat_spoke(aes(angle=(5/8)*pi, radius=Yvar3), colour="#4DAF4A",size=1) +
         stat_spoke(aes(angle=(7/8)*pi, radius=Yvar4), colour="#984EA3",size=1) +
         geom_point(shape=1, size = 10)

ggsave("plot_1.png", plot_1)
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

根据您的数据和特定需求,转换变量以使它们更好地适应绘图可能是有意义的.

normalize = function(x) {
    new_x = (x - mean(x)) / sd(x)
    new_x = new_x + abs(min(new_x))
    return(new_x)
}

plot_2 = ggplot(datas, aes(x=Xvar, y=Yvar)) +
         stat_spoke(aes(angle=(1/8)*pi, radius=normalize(Yvar1)), colour="#E41A1C", size=1) +
         stat_spoke(aes(angle=(3/8)*pi, radius=normalize(Yvar2)), colour="#377EB8", size=1) +
         stat_spoke(aes(angle=(5/8)*pi, radius=normalize(Yvar3)), colour="#4DAF4A", size=1) +
         stat_spoke(aes(angle=(7/8)*pi, radius=normalize(Yvar4)), colour="#984EA3", size=1) +
         geom_point(shape=1, size = 10)

ggsave("plot_2.png", plot_2)
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

重要警告:对于相同的辐条半径值,如果线条更垂直,则绘制线条的幅度将更大,如果线条更加水平,则线条幅度更小.这是因为x的范围大约是数据集y的两倍范围.随着x-y轴比的变化,绘制的角度也会变形.添加coord_equal(ratio=1)解决了这个问题,但可能会引入其他问题. 在此输入图像描述

编辑:没有循环的绘图

这很有趣,也很有教育意义.输入重复代码可能会更加节省时间!如果有人可以提供改进此代码的建议,请发表评论.

library(reshape2)

dat2 = melt(datas, id.vars=c("Indv", "Xvar", "Yvar"), 
            variable.name="spoke_var", value.name="spoke_value")

# Apply normalization in a loop. Can plyr do this more gracefully?.
for (var_name in levels(dat2$spoke_var)) {
    select_rows = dat2$spoke_var == var_name
    norm_dat = normalize(dat2[select_rows, "spoke_value"])
    dat2[select_rows, "spoke_value"] = norm_dat
}

# Pick an angle for each Yvar, then add angle column to dat2.
tmp = data.frame(spoke_var=unique(dat2$spoke_var))
tmp$spoke_angle = seq(from=pi/8, by=pi/4, length.out=nrow(tmp))
dat2 = merge(dat2, tmp)

plot_4 = ggplot(dat2, aes(x=Xvar, y=Yvar)) +
         stat_spoke(data=dat2, size=1,
                    aes(colour=spoke_var, angle=spoke_angle, radius=spoke_value)) +
         geom_point(data=datas, aes(x=Xvar, y=Yvar), shape=1, size=7) +
         coord_equal(ratio=1) +
         scale_colour_brewer(palette="Set1")
Run Code Online (Sandbox Code Playgroud)