逐帧可视化3D-numpy-array

fei*_*ann 5 python numpy data-visualization matplotlib

# -*- coding: utf-8 -*-
"""
slider 3D numpy array

"""

import numpy
import pylab
from matplotlib.widgets import Slider

data = numpy.random.rand(100,256,256) #3d-array with 100 frames 256x256

ax = pylab.subplot(111)
pylab.subplots_adjust(left=0.25, bottom=0.25)

frame = 0
l = pylab.imshow(data[frame,:,:]) #shows 256x256 image, i.e. 0th frame

axcolor = 'lightgoldenrodyellow'
axframe = pylab.axes([0.25, 0.1, 0.65, 0.03], axisbg=axcolor)
sframe = Slider(axframe, 'Frame', 0, 100, valinit=0)

def update(val):
    frame = numpy.around(sframe.val)
    pylab.subplot(111)
    pylab.subplots_adjust(left=0.25, bottom=0.25)
    pylab.imshow(data[frame,:,:])

sframe.on_changed(update)

pylab.show()
Run Code Online (Sandbox Code Playgroud)

我有一个3D-numpy数组,实际上包含大小为256x256的图像.现在我想使用滑块显示这些帧.它看起来真的很慢.有没有更好的方法呢?

tac*_*ell 6

尝试重写更新功能

def update(val):
    frame = numpy.around(sframe.val)
    l.set_data(data[frame,:,:])
Run Code Online (Sandbox Code Playgroud)

这样您就不需要在每次更新时重新创建所有matplotlib对象