Ham*_*mer 18 c iphone assembly image-processing neon
我正在开发一个可以进行实时图像处理的iPhone应用程序.其管道中最早的步骤之一是将BGRA图像转换为灰度图像.我尝试了几种不同的方法,时间结果的差异远大于我想象的可能.首先我尝试使用C.我通过添加B + 2*G + R/4来近似转换为光度
void BGRA_To_Byte(Image<BGRA> &imBGRA, Image<byte> &imByte)
{
uchar *pIn = (uchar*) imBGRA.data;
uchar *pLimit = pIn + imBGRA.MemSize();
uchar *pOut = imByte.data;
for(; pIn < pLimit; pIn+=16) // Does four pixels at a time
{
unsigned int sumA = pIn[0] + 2 * pIn[1] + pIn[2];
pOut[0] = sumA / 4;
unsigned int sumB = pIn[4] + 2 * pIn[5] + pIn[6];
pOut[1] = sumB / 4;
unsigned int sumC = pIn[8] + 2 * pIn[9] + pIn[10];
pOut[2] = sumC / 4;
unsigned int sumD = pIn[12] + 2 * pIn[13] + pIn[14];
pOut[3] = sumD / 4;
pOut +=4;
}
}
Run Code Online (Sandbox Code Playgroud)
此代码需要55毫秒才能转换352x288图像.然后我发现了一些基本相同的汇编程序代码
void BGRA_To_Byte(Image<BGRA> &imBGRA, Image<byte> &imByte)
{
uchar *pIn = (uchar*) imBGRA.data;
uchar *pLimit = pIn + imBGRA.MemSize();
unsigned int *pOut = (unsigned int*) imByte.data;
for(; pIn < pLimit; pIn+=16) // Does four pixels at a time
{
register unsigned int nBGRA1 asm("r4");
register unsigned int nBGRA2 asm("r5");
unsigned int nZero=0;
unsigned int nSum1;
unsigned int nSum2;
unsigned int nPacked1;
asm volatile(
"ldrd %[nBGRA1], %[nBGRA2], [ %[pIn], #0] \n" // Load in two BGRA words
"usad8 %[nSum1], %[nBGRA1], %[nZero] \n" // Add R+G+B+A
"usad8 %[nSum2], %[nBGRA2], %[nZero] \n" // Add R+G+B+A
"uxtab %[nSum1], %[nSum1], %[nBGRA1], ROR #8 \n" // Add G again
"uxtab %[nSum2], %[nSum2], %[nBGRA2], ROR #8 \n" // Add G again
"mov %[nPacked1], %[nSum1], LSR #2 \n" // Init packed word
"mov %[nSum2], %[nSum2], LSR #2 \n" // Div by four
"add %[nPacked1], %[nPacked1], %[nSum2], LSL #8 \n" // Add to packed word
"ldrd %[nBGRA1], %[nBGRA2], [ %[pIn], #8] \n" // Load in two more BGRA words
"usad8 %[nSum1], %[nBGRA1], %[nZero] \n" // Add R+G+B+A
"usad8 %[nSum2], %[nBGRA2], %[nZero] \n" // Add R+G+B+A
"uxtab %[nSum1], %[nSum1], %[nBGRA1], ROR #8 \n" // Add G again
"uxtab %[nSum2], %[nSum2], %[nBGRA2], ROR #8 \n" // Add G again
"mov %[nSum1], %[nSum1], LSR #2 \n" // Div by four
"add %[nPacked1], %[nPacked1], %[nSum1], LSL #16 \n" // Add to packed word
"mov %[nSum2], %[nSum2], LSR #2 \n" // Div by four
"add %[nPacked1], %[nPacked1], %[nSum2], LSL #24 \n" // Add to packed word
///////////
////////////
: [pIn]"+r" (pIn),
[nBGRA1]"+r"(nBGRA1),
[nBGRA2]"+r"(nBGRA2),
[nZero]"+r"(nZero),
[nSum1]"+r"(nSum1),
[nSum2]"+r"(nSum2),
[nPacked1]"+r"(nPacked1)
:
: "cc" );
*pOut = nPacked1;
pOut++;
}
}
Run Code Online (Sandbox Code Playgroud)
此功能可在12ms内转换相同的图像,速度提高近5倍!我以前没有在汇编程序中编程,但我认为对于这样一个简单的操作,它不会比C快得多.通过这次成功,我继续搜索,发现一个NEON转换例子启发这里.
void greyScaleNEON(uchar* output_data, uchar* input_data, int tot_pixels)
{
__asm__ volatile("lsr %2, %2, #3 \n"
"# build the three constants: \n"
"mov r4, #28 \n" // Blue channel multiplier
"mov r5, #151 \n" // Green channel multiplier
"mov r6, #77 \n" // Red channel multiplier
"vdup.8 d4, r4 \n"
"vdup.8 d5, r5 \n"
"vdup.8 d6, r6 \n"
"0: \n"
"# load 8 pixels: \n"
"vld4.8 {d0-d3}, [%1]! \n"
"# do the weight average: \n"
"vmull.u8 q7, d0, d4 \n"
"vmlal.u8 q7, d1, d5 \n"
"vmlal.u8 q7, d2, d6 \n"
"# shift and store: \n"
"vshrn.u16 d7, q7, #8 \n" // Divide q3 by 256 and store in the d7
"vst1.8 {d7}, [%0]! \n"
"subs %2, %2, #1 \n" // Decrement iteration count
"bne 0b \n" // Repeat unil iteration count is not zero
:
: "r"(output_data),
"r"(input_data),
"r"(tot_pixels)
: "r4", "r5", "r6"
);
}
Run Code Online (Sandbox Code Playgroud)
时间结果很难相信.它在1毫秒内转换相同的图像.比汇编程序快12倍,比C语言快55倍.我不知道这样的性能提升是可能的.鉴于此,我有几个问题.首先,我在C代码中做了一些非常错误的事情吗?我仍然觉得很难相信它太慢了.其次,如果这些结果完全准确,我可以期望在哪些情况下看到这些收益?您可以想象我对使管道的其他部分运行速度提高55倍的前景感到非常兴奋.我是否应该学习汇编程序/ NEON并在任何需要相当长时间的循环中使用它们?
更新1:我已经在http://temp-share.com/show/f3Yg87jQn的文本文件中发布了我的C函数的汇编输出.这个 太大了,不能直接包含在这里.
使用OpenCV函数完成定时.
double duration = static_cast<double>(cv::getTickCount());
//function call
duration = static_cast<double>(cv::getTickCount())-duration;
duration /= cv::getTickFrequency();
//duration should now be elapsed time in ms
Run Code Online (Sandbox Code Playgroud)
我测试了几个建议的改进.首先,根据Viktor的建议,我重新排序内部循环以将所有提取放在第一位.然后内环看起来像.
for(; pIn < pLimit; pIn+=16) // Does four pixels at a time
{
//Jul 16, 2012 MR: Read and writes collected
sumA = pIn[0] + 2 * pIn[1] + pIn[2];
sumB = pIn[4] + 2 * pIn[5] + pIn[6];
sumC = pIn[8] + 2 * pIn[9] + pIn[10];
sumD = pIn[12] + 2 * pIn[13] + pIn[14];
pOut +=4;
pOut[0] = sumA / 4;
pOut[1] = sumB / 4;
pOut[2] = sumC / 4;
pOut[3] = sumD / 4;
}
Run Code Online (Sandbox Code Playgroud)
这一变化使处理时间缩短到53毫秒,提高了2毫秒.接下来按照Victor的建议我改变了我的函数以获取uint.然后内环看起来像
unsigned int* in_int = (unsigned int*) original.data;
unsigned int* end = (unsigned int*) in_int + out_length;
uchar* out = temp.data;
for(; in_int < end; in_int+=4) // Does four pixels at a time
{
unsigned int pixelA = in_int[0];
unsigned int pixelB = in_int[1];
unsigned int pixelC = in_int[2];
unsigned int pixelD = in_int[3];
uchar* byteA = (uchar*)&pixelA;
uchar* byteB = (uchar*)&pixelB;
uchar* byteC = (uchar*)&pixelC;
uchar* byteD = (uchar*)&pixelD;
unsigned int sumA = byteA[0] + 2 * byteA[1] + byteA[2];
unsigned int sumB = byteB[0] + 2 * byteB[1] + byteB[2];
unsigned int sumC = byteC[0] + 2 * byteC[1] + byteC[2];
unsigned int sumD = byteD[0] + 2 * byteD[1] + byteD[2];
out[0] = sumA / 4;
out[1] = sumB / 4;
out[2] = sumC / 4;
out[3] = sumD / 4;
out +=4;
}
Run Code Online (Sandbox Code Playgroud)
这种修改产生了巨大的影响,处理时间减少到14毫秒,下降了39毫秒(75%).最后的结果非常接近11ms的汇编程序性能.rob建议的最终优化是包含__restrict关键字.我在每个指针声明前面添加了它,改变了以下行
__restrict unsigned int* in_int = (unsigned int*) original.data;
unsigned int* end = (unsigned int*) in_int + out_length;
__restrict uchar* out = temp.data;
...
__restrict uchar* byteA = (uchar*)&pixelA;
__restrict uchar* byteB = (uchar*)&pixelB;
__restrict uchar* byteC = (uchar*)&pixelC;
__restrict uchar* byteD = (uchar*)&pixelD;
...
Run Code Online (Sandbox Code Playgroud)
这些变化对处理时间没有可测量的影响.感谢您的帮助,我将来会更加关注内存管理.
这里有一个关于NEON"成功"的一些原因的解释:http://hilbert-space.de/?p = 22
尝试使用"-S -O3"开关编译C代码,以查看GCC编译器的优化输出.
恕我直言,成功的关键是两个装配版本采用的优化读/写模式.NEON/MMX /其他矢量引擎也支持饱和(钳位结果为0..255,而不必使用'无符号整数').
在循环中查看以下行:
unsigned int sumA = pIn[0] + 2 * pIn[1] + pIn[2];
pOut[0] = sumA / 4;
unsigned int sumB = pIn[4] + 2 * pIn[5] + pIn[6];
pOut[1] = sumB / 4;
unsigned int sumC = pIn[8] + 2 * pIn[9] + pIn[10];
pOut[2] = sumC / 4;
unsigned int sumD = pIn[12] + 2 * pIn[13] + pIn[14];
pOut[3] = sumD / 4;
pOut +=4;
Run Code Online (Sandbox Code Playgroud)
读写真的好坏参半.循环周期的稍微好一点的版本
// and the pIn reads can be combined into a single 4-byte fetch
sumA = pIn[0] + 2 * pIn[1] + pIn[2];
sumB = pIn[4] + 2 * pIn[5] + pIn[6];
sumC = pIn[8] + 2 * pIn[9] + pIn[10];
sumD = pIn[12] + 2 * pIn[13] + pIn[14];
pOut +=4;
pOut[0] = sumA / 4;
pOut[1] = sumB / 4;
pOut[2] = sumC / 4;
pOut[3] = sumD / 4;
Run Code Online (Sandbox Code Playgroud)
请记住,这里的"unsigned in sumA"行实际上可能意味着alloca()调用(在堆栈上的分配),因此你在临时var分配上浪费了很多周期(函数调用4次).
此外,pIn [i]索引仅从内存中进行单字节提取.更好的方法是读取int然后提取单个字节.为了加快速度,使用"unsgined int*"读取4个字节(pIn [i*4 + 0],pIn [i*4 + 1],pIn [i*4 + 2],pIn [i*4 + 3]).
NEON版本明显优越:线条
"# load 8 pixels: \n"
"vld4.8 {d0-d3}, [%1]! \n"
Run Code Online (Sandbox Code Playgroud)
和
"#save everything in one shot \n"
"vst1.8 {d7}, [%0]! \n"
Run Code Online (Sandbox Code Playgroud)
节省大部分时间进行内存访问.
| 归档时间: |
|
| 查看次数: |
1900 次 |
| 最近记录: |