我有这个方程组
1=x\xe2\x8a\x95y\xe2\x8a\x95z
\n1=x\xe2\x8a\x95y\xe2\x8a\x95w
\n0=x\xe2\x8a\x95w\xe2\ x8a\x95z
\n1=w\xe2\x8a\x95y\xe2\x8a\x95z
我正在尝试实现高斯消除来解决这个系统,如此处所述用异或代替除法、减法和乘法,但它给出了我的错误答案..正确答案是 (x,y,z,w)=(0,1,0,0)
我做错了什么?
public static void ComputeCoefficents(byte[,] X, byte[] Y)\n {\n int I, J, K, K1, N;\n N = Y.Length;\n for (K = 0; K < N; K++)\n {\n K1 = K + 1;\n for (I = K; I < N; I++)\n {\n if (X[I, K] != 0)\n {\n for (J = K1; J < N; J++)\n {\n X[I, J] /= X[I, K];\n }\n //Y[I] /= X[I, K];\n Y[I] ^= X[I, K];\n\n }\n }\n for (I = K1; I < N; I++)\n {\n if (X[I, K] != 0)\n {\n for (J = K1; J < N; J++)\n {\n X[I, J] ^= X[K, J];\n }\n Y[I] ^= Y[K];\n }\n }\n }\n for (I = N - 2; I >= 0; I--)\n {\n for (J = N - 1; J >= I + 1; J--)\n {\n //Y[I] -= AndOperation(X[I, J], Y[J]);\n Y[I] ^= (byte)(X[I, J]* Y[J]);\n\n }\n }\n } \nRun Code Online (Sandbox Code Playgroud)\n
我认为你正在尝试为此应用高斯消除模 2。
一般来说,如果您的方程具有以下形式,您可以进行高斯消去模 k
a_1 * x + b_1 * y + c_1 * z = d_1
a_2 * x + b_2 * y + c_2 * z = d_2
a_3 * x + b_3 * y + c_3 * z = d_3
a_4 * x + b_4 * y + c_4 * z = d_4
Run Code Online (Sandbox Code Playgroud)
在 Z2 * isand和 + is中xor,因此您可以使用高斯消去法来求解以下形式的方程
x (xor) y (xor) z = 1
x (xor) y (xor) w = 1
x (xor) z (xor) w = 0
y (xor) z (xor) w = 1
Run Code Online (Sandbox Code Playgroud)
让我们手动使用高斯消去法来计算这个方程。
相应的增广矩阵为:
1 1 1 0 | 1
1 1 0 1 | 1
1 0 1 1 | 0
0 1 1 1 | 1
1 1 1 0 | 1
0 0 1 1 | 0 (R2 = R2 + R1)
0 1 0 1 | 1 (R3 = R3 + R1)
0 1 1 1 | 1
1 1 1 0 | 1
0 1 1 1 | 1 (R2 = R4)
0 1 0 1 | 1
0 0 1 1 | 0 (R4 = R2)
1 0 0 1 | 0 (R1 = R1 + R2)
0 1 1 1 | 1
0 0 1 0 | 0 (R3 = R3 + R2)
0 0 1 1 | 0
1 0 0 1 | 0
0 1 0 1 | 1 (R2 = R2 + R3)
0 0 1 0 | 0
0 0 0 1 | 0 (R4 = R4 + R3)
1 0 0 0 | 0 (R1 = R1 + R4)
0 1 0 0 | 1 (R2 = R2 + R4)
0 0 1 0 | 0
0 0 0 1 | 0
Run Code Online (Sandbox Code Playgroud)
给出 (x,y,z,w) = (0,1,0,0) 的解。
但这需要行旋转 - 我在您的代码中看不到。
代码中还存在一些可能不需要的乘法和除法。我希望代码如下所示:(您需要修复 TODO)。
public static void ComputeCoefficents(byte[,] X, byte[] Y) {
int I, J, K, K1, N;
N = Y.Length;
for (K = 0; K < N; K++) {
//First ensure that we have a non-zero entry in X[K,K]
if( X[K,K] == 0 ) {
for(int i = 0; i<N ; ++i ) {
if(X[i,K] != 0 ) {
for( ... ) //TODO: A loop to swap the entries
//TODO swap entries in Y too
}
}
if( X[K,K] == 0 ) {
// TODO: Handle the case where we have a zero column
// - for now we just move on to the next column
// - This means we have no solutions or multiple
// solutions
continue
}
// Do full row elimination.
for( int I = 0; I<N; ++I)
{
if( I!=K ){ //Don't self eliminate
if( X[I,K] ) {
for( int J=K; J<N; ++J ) { X[I,J] = X[I,J] ^ X[K,J]; }
Y[J] = Y[J] ^ Y[K];
}
}
}
}
//Now assuming we didnt hit any zero columns Y should be our solution.
Run Code Online (Sandbox Code Playgroud)
}
| 归档时间: |
|
| 查看次数: |
5091 次 |
| 最近记录: |