Ami*_*hah 2 python iteration recursion for-loop if-statement
挑战是找到所有可能的小于N的数字组合,其总和等于N.例如,当N等于:
等等...
现在在python中创建它,以了解我起草此代码的模式第一:
N=5
for d in drange(0,N,1):
if N-d*4>=0:
for c in drange(0,N,1):
if N-d*4-c*3>=0:
for b in drange(0,N,1):
if N-d*4-c*3-b*2>=0:
for a in drange(0,N,1):
if N-d*4-c*3-b*2-a*1==0:
if sum([d,c,b,a])!=1:
print d,c,b,a
else: break
else:break
else:break
Run Code Online (Sandbox Code Playgroud)
Run Code Online (Sandbox Code Playgroud)N=6 for e in drange(0,N,1): if N-e*5>=0: C0 = N-e*5 for d in drange(0,N,1): if C0-d*4>=0: C1 = C0-d*4 for c in drange(0,N,1): if C1-c*3>=0: C2 = C1-c*3 for b in drange(0,N,1): if C2-b*2>=0: C3 = C2-b*2 for a in drange(0,N,1): if C3-a*1==0: if sum([e,d,c,b,a])!=1: print e,d,c,b,a else: break else:break else:break else:break
Run Code Online (Sandbox Code Playgroud)N=6 Nums = drange2(6-1,-1,-1) Vals = [0]*6 Vars = [0]*6 for Vars[0] in drange(0,N,1): if N-Vars[0]*Nums[0]>=0: Vals[0] = N-Vars[0]*Nums[0] for Vars[1] in drange(0,N,1): if Vals[0]-Vars[1]*Nums[1]>=0: Vals[1] = Vals[0]-Vars[1]*Nums[1] for Vars[2] in drange(0,N,1): if Vals[1]-Vars[2]*Nums[2]>=0: Vals[2] = Vals[1]-Vars[2]*Nums[2] for Vars[3] in drange(0,N,1): if Vals[2]-Vars[3]*Nums[3]>=0: Vals[3] = Vals[2]-Vars[3]*Nums[3] for Vars[4] in drange(0,N,1): if Vals[3]-Vars[4]*Nums[4]==0: if sum([Vars[0],Vars[1],Vars[2],Vars[3],Vars[4]])!=1: print Vars else: break else:break else:break else:break
Run Code Online (Sandbox Code Playgroud)N=48 Nums = drange2(N-1,-1,-1) Vals = [0]*N Vars = [0]*(N-1) count=0 def sumCombos(Number,i): if i==0: global count for Vars[i] in xrange(0,i+2,1): z = Number-Vars[i]*Nums[i] if z>=0: Vals[i] = z sumCombos(Number,i+1) else: break elif i<Number-2: for Vars[i] in xrange(0,i+1,1): z = Vals[i-1]-Vars[i]*Nums[i] if z >=0: Vals[i]=z sumCombos(Number,i+1) else: break elif i==Number-2: for Vars[i] in xrange(0,i+3,1): if Vals[i-1]-Vars[i]*Nums[i]==0: count+=1 sumCombos(N,0) print count
你为什么要它递归?
>>> from itertools import chain, combinations_with_replacement
>>> n = 7
>>> [i for i in chain.from_iterable(
combinations_with_replacement(range(1, n), k)
for k in range(2, n+1))
if sum(i) == n]
[(1, 6), (2, 5), (3, 4), (1, 1, 5), (1, 2, 4), (1, 3, 3), (2, 2, 3), (1, 1, 1, 4), (1, 1, 2, 3), (1, 2, 2, 2), (1, 1, 1, 1, 3), (1, 1, 1, 2, 2), (1, 1, 1, 1, 1, 2), (1, 1, 1, 1, 1, 1, 1)]
Run Code Online (Sandbox Code Playgroud)
这个问题随着n而增长!所以,大数字需要花费很多时间.