nas*_*ddd 12 r data.table
是否可以使用data.table语法(如X [Y])等效合并(...,all = TRUE)?
具体来说,我需要一种非常快速的方法来获得结果:
item_length = data.table(index = 1:10, length =  c(2,5,4,6,3),key ="index")
item_weigth = data.table(index = c(2,4,6,7,8,11), weight= c(.3,.5,.2), key = "index")
merge(x2,y2, all=TRUE)
Run Code Online (Sandbox Code Playgroud)
这是:
> merge(item_length ,item_weigth , all=TRUE)
      index length weight
[1,]     1      2     NA
[2,]     2      5    0.3
[3,]     3      4     NA
[4,]     4      6    0.5
[5,]     5      3     NA
[6,]     6      2    0.2
[7,]     7      5    0.3
[8,]     8      4    0.5
[9,]     9      6     NA
[10,]    10      3     NA
[11,]    11     NA    0.2
Run Code Online (Sandbox Code Playgroud)
    nas*_*ddd 14
很抱歉回答我自己的问题,但我认为值得分享:
一个非常快速的解决方案似乎是更新到最新版本的data.table(1.8.0).(非常感谢,马修!)
这是我的测试数据和基准测试结果:
使用data.table:
full_index <- 1:5000000
ratio_in_samples <- 0.8
x <- data.table(index = sample(full_index, length(full_index)*ratio_in_samples), 
                var1 = rnorm(length(full_index)*ratio_in_samples),
                key = "index")
y <- data.table(index = sample(full_index, length(full_index)*ratio_in_samples), 
                var2 = rnorm(length(full_index)*ratio_in_samples),
                key = "index")
system.time(
result <- merge(x,y, all=TRUE)
)
Run Code Online (Sandbox Code Playgroud)
使用data.table的时间:
user  system elapsed 
5.05    0.55    5.62
Run Code Online (Sandbox Code Playgroud)
而data.frame:
full_index <- 1:5000000
ratio_in_samples <- 0.8
x <- data.frame(index = sample(full_index, length(full_index)*ratio_in_samples), 
                var1 = rnorm(length(full_index)*ratio_in_samples))
y <- data.frame(index = sample(full_index, length(full_index)*ratio_in_samples), 
                var2 = rnorm(length(full_index)*ratio_in_samples))
system.time(
  result <- merge(x,y, all=TRUE)
)
Run Code Online (Sandbox Code Playgroud)
data.frame的时间:
user  system elapsed 
78.83    1.75   80.67 
Run Code Online (Sandbox Code Playgroud)