nyv*_*tak 10 python numpy scipy
是否有一个函数可用于计算矢量场的发散?(在matlab中)我希望它存在于numpy/scipy中,但我无法使用Google找到它.
我需要计算div[A * grad(F)],在哪里
F = np.array([[1,2,3,4],[5,6,7,8]]) # (2D numpy ndarray)
A = np.array([[1,2,3,4],[1,2,3,4]]) # (2D numpy ndarray)
Run Code Online (Sandbox Code Playgroud)
所以grad(F)是2D的列表ndarray小号
我知道我可以像这样计算分歧,但不想重新发明轮子.(我也希望有更优化的东西)有人有建议吗?
小智 12
只是暗示每个人都在阅读:
上述函数不计算向量场的偏差.他们总结了标量场的衍生物A:
结果= dA/dx + dA/dy
与矢量场(具有三维示例)形成对比:
result = sum dAi/dxi = dAx/dx + dAy/dy + dAz/dz
为所有人投票!这在数学上是完全错误的.
干杯!
小智 11
import numpy as np
def divergence(field):
"return the divergence of a n-D field"
return np.sum(np.gradient(field),axis=0)
Run Code Online (Sandbox Code Playgroud)
Juh*_*uh_ 10
@ user2818943的答案很好,但可以稍微优化一下:
def divergence(F):
""" compute the divergence of n-D scalar field `F` """
return reduce(np.add,np.gradient(F))
Run Code Online (Sandbox Code Playgroud)
Timeit:
F = np.random.rand(100,100)
timeit reduce(np.add,np.gradient(F))
# 1000 loops, best of 3: 318 us per loop
timeit np.sum(np.gradient(F),axis=0)
# 100 loops, best of 3: 2.27 ms per loop
Run Code Online (Sandbox Code Playgroud)
大约快7倍:
sum从返回的渐变字段列表中隐含地构造一个3d数组np.gradient.这是避免使用reduce
现在,在你的问题中,你的意思是 div[A * grad(F)]什么?
A * grad(F):A是一个2d数组,是2d数组grad(f)的列表.所以我认为这意味着将每个梯度场乘以A.A)梯度场尚不清楚.根据定义,div(F) = d(F)/dx + d(F)/dy + ....我想这只是一个错误的表述.因为1,将相加的元素乘以Bi相同的因子A可以被分解:
Sum(A*Bi) = A*Sum(Bi)
Run Code Online (Sandbox Code Playgroud)
因此,您可以通过以下方式获得此加权渐变: A*divergence(F)
如果A是不是对每个维度的因素,一个列表,那么解决办法是:
def weighted_divergence(W,F):
"""
Return the divergence of n-D array `F` with gradient weighted by `W`
?`W` is a list of factors for each dimension of F: the gradient of `F` over
the `i`th dimension is multiplied by `W[i]`. Each `W[i]` can be a scalar
or an array with same (or broadcastable) shape as `F`.
"""
wGrad = return map(np.multiply, W, np.gradient(F))
return reduce(np.add,wGrad)
result = weighted_divergence(A,F)
Run Code Online (Sandbox Code Playgroud)
基于Juh_的答案,但针对矢量场公式的正确散度进行了修改
def divergence(f):
"""
Computes the divergence of the vector field f, corresponding to dFx/dx + dFy/dy + ...
:param f: List of ndarrays, where every item of the list is one dimension of the vector field
:return: Single ndarray of the same shape as each of the items in f, which corresponds to a scalar field
"""
num_dims = len(f)
return np.ufunc.reduce(np.add, [np.gradient(f[i], axis=i) for i in range(num_dims)])
Run Code Online (Sandbox Code Playgroud)
Matlab的文档使用此确切公式(向下滚动到矢量场的散度)
大牛修改的就是正确的答案,让我更详细地解释一下自定义函数发散:
函数np.gradient()定义为:np.gradient(f)= df/dx、df/dy、df/dz +...
但我们需要将 func divergence 定义为:divergence ( f) = dfx/dx + dfy/dy + dfz/dz +... = np.gradient( fx) + np.gradient(fy)+ np.gradient(fz)+ ...
让我们测试一下,与matlab中的散度示例进行比较
import numpy as np
import matplotlib.pyplot as plt
NY = 50
ymin = -2.
ymax = 2.
dy = (ymax -ymin )/(NY-1.)
NX = NY
xmin = -2.
xmax = 2.
dx = (xmax -xmin)/(NX-1.)
def divergence(f):
num_dims = len(f)
return np.ufunc.reduce(np.add, [np.gradient(f[i], axis=i) for i in range(num_dims)])
y = np.array([ ymin + float(i)*dy for i in range(NY)])
x = np.array([ xmin + float(i)*dx for i in range(NX)])
x, y = np.meshgrid( x, y, indexing = 'ij', sparse = False)
Fx = np.cos(x + 2*y)
Fy = np.sin(x - 2*y)
F = [Fx, Fy]
g = divergence(F)
plt.pcolormesh(x, y, g)
plt.colorbar()
plt.savefig( 'Div' + str(NY) +'.png', format = 'png')
plt.show()
Run Code Online (Sandbox Code Playgroud)
---------- 更新版本:包括差异步骤----------------
感谢@henry的评论,np.gradient默认步长为1,所以结果可能会有一些不匹配。我们可以提供我们自己的微分步骤。
#/sf/answers/3353350521/
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
NY = 50
ymin = -2.
ymax = 2.
dy = (ymax -ymin )/(NY-1.)
NX = NY
xmin = -2.
xmax = 2.
dx = (xmax -xmin)/(NX-1.)
def divergence(f,h):
"""
div(F) = dFx/dx + dFy/dy + ...
g = np.gradient(Fx,dx, axis=1)+ np.gradient(Fy,dy, axis=0) #2D
g = np.gradient(Fx,dx, axis=2)+ np.gradient(Fy,dy, axis=1) +np.gradient(Fz,dz,axis=0) #3D
"""
num_dims = len(f)
return np.ufunc.reduce(np.add, [np.gradient(f[i], h[i], axis=i) for i in range(num_dims)])
y = np.array([ ymin + float(i)*dy for i in range(NY)])
x = np.array([ xmin + float(i)*dx for i in range(NX)])
x, y = np.meshgrid( x, y, indexing = 'ij', sparse = False)
Fx = np.cos(x + 2*y)
Fy = np.sin(x - 2*y)
F = [Fx, Fy]
h = [dx, dy]
print('plotting')
rows = 1
cols = 2
#plt.clf()
plt.figure(figsize=(cols*3.5,rows*3.5))
plt.minorticks_on()
#g = np.gradient(Fx,dx, axis=1)+np.gradient(Fy,dy, axis=0) # equivalent to our func
g = divergence(F,h)
ax = plt.subplot(rows,cols,1,aspect='equal',title='div numerical')
#im=plt.pcolormesh(x, y, g)
im = plt.pcolormesh(x, y, g, shading='nearest', cmap=plt.cm.get_cmap('coolwarm'))
plt.quiver(x,y,Fx,Fy)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
cbar = plt.colorbar(im, cax = cax,format='%.1f')
g = -np.sin(x+2*y) -2*np.cos(x-2*y)
ax = plt.subplot(rows,cols,2,aspect='equal',title='div analytical')
im=plt.pcolormesh(x, y, g)
im = plt.pcolormesh(x, y, g, shading='nearest', cmap=plt.cm.get_cmap('coolwarm'))
plt.quiver(x,y,Fx,Fy)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
cbar = plt.colorbar(im, cax = cax,format='%.1f')
plt.tight_layout()
plt.savefig( 'divergence.png', format = 'png')
plt.show()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
16590 次 |
| 最近记录: |