Eti*_*rie 27 merge r plyr dataframe data.table
我正在寻找一种有效的(计算机资源方面和学习/实现方式)方法来合并两个更大的(大小> 100万/ 300 KB RData文件)数据帧.
基础R中的"merge"和plyr中的"join"似乎耗尽了我的所有内存,有效地崩溃了我的系统.
示例
负载测试数据框
并尝试
test.merged<-merge(test, test)
Run Code Online (Sandbox Code Playgroud)
要么
test.merged<-join(test, test, type="all")
Run Code Online (Sandbox Code Playgroud)
以下帖子提供了合并和备选方案的列表:
如何连接(合并)数据框(内部,外部,左侧,右侧)?
以下允许对象大小检查:https:
//heuristically.wordpress.com/2010/01/04/r-memory-usage-statistics-variable/
匿名制作的数据
bde*_*est 26
以下是data.table与data.frame方法的一些时序.
使用data.table非常快.关于内存,我可以非正式地报告这两种方法在RAM使用方面非常相似(在20%以内).
library(data.table)
set.seed(1234)
n = 1e6
data_frame_1 = data.frame(id=paste("id_", 1:n, sep=""),
factor1=sample(c("A", "B", "C"), n, replace=TRUE))
data_frame_2 = data.frame(id=sample(data_frame_1$id),
value1=rnorm(n))
data_table_1 = data.table(data_frame_1, key="id")
data_table_2 = data.table(data_frame_2, key="id")
system.time(df.merged <- merge(data_frame_1, data_frame_2))
# user system elapsed
# 17.983 0.189 18.063
system.time(dt.merged <- merge(data_table_1, data_table_2))
# user system elapsed
# 0.729 0.099 0.821
Run Code Online (Sandbox Code Playgroud)
Jos*_*ien 20
这是必须的data.table
例子:
library(data.table)
## Fix up your example data.frame so that the columns aren't all factors
## (not necessary, but shows that data.table can now use numeric columns as keys)
cols <- c(1:5, 7:10)
test[cols] <- lapply(cols, FUN=function(X) as.numeric(as.character(test[[X]])))
test[11] <- as.logical(test[[11]])
## Create two data.tables with which to demonstrate a data.table merge
dt <- data.table(test, key=names(test))
dt2 <- copy(dt)
## Add to each one a unique non-keyed column
dt$X <- seq_len(nrow(dt))
dt2$Y <- rev(seq_len(nrow(dt)))
## Merge them based on the keyed columns (in both cases, all but the last) to ...
## (1) create a new data.table
dt3 <- dt[dt2]
## (2) or (poss. minimizing memory usage), just add column Y from dt2 to dt
dt[dt2,Y:=Y]
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
28279 次 |
最近记录: |