Sav*_*sis 14 java math affinetransform
嗨,我正在尝试创建仿射变换,这将允许我将三角形转换为另一个.我所拥有的是2个三角形的坐标.你能帮助我吗?
按照亚当罗森菲尔德的回答,我想出了这个代码,万一有人无聊自己解决方程:
public static AffineTransform createTransform(ThreePointSystem source,
ThreePointSystem dest) {
double x11 = source.point1.getX();
double x12 = source.point1.getY();
double x21 = source.point2.getX();
double x22 = source.point2.getY();
double x31 = source.point3.getX();
double x32 = source.point3.getY();
double y11 = dest.point1.getX();
double y12 = dest.point1.getY();
double y21 = dest.point2.getX();
double y22 = dest.point2.getY();
double y31 = dest.point3.getX();
double y32 = dest.point3.getY();
double a1 = ((y11-y21)*(x12-x32)-(y11-y31)*(x12-x22))/
((x11-x21)*(x12-x32)-(x11-x31)*(x12-x22));
double a2 = ((y11-y21)*(x11-x31)-(y11-y31)*(x11-x21))/
((x12-x22)*(x11-x31)-(x12-x32)*(x11-x21));
double a3 = y11-a1*x11-a2*x12;
double a4 = ((y12-y22)*(x12-x32)-(y12-y32)*(x12-x22))/
((x11-x21)*(x12-x32)-(x11-x31)*(x12-x22));
double a5 = ((y12-y22)*(x11-x31)-(y12-y32)*(x11-x21))/
((x12-x22)*(x11-x31)-(x12-x32)*(x11-x21));
double a6 = y12-a4*x11-a5*x12;
return new AffineTransform(a1, a4, a2, a5, a3, a6);
}
Run Code Online (Sandbox Code Playgroud)
Ada*_*eld 13
我假设你在这里谈论2D.仿射变换矩阵中有9个值:
| a1 a2 a3 | A = | a4 a5 a6 | | a7 a8 a9 |
有3个顶点输入x1
,x2
和x3
,当其转化应该成为y1
,y2
,y3
.然而,由于我们在齐次坐标的工作,应用A
到x1
不一定给y1
-它给人的倍数y1
.所以,我们也有未知的乘法器k1
,k2
以及k3
,用公式:
A*x1 = k1*y1 A*x2 = k2*y2 A*x3 = k3*y3
每个都是一个向量,所以我们确实有12个未知数的9个方程,因此解决方案将受到不足.如果我们要求a7=0
,a8=0
以及a9=1
,然后将溶液将是唯一的(这种选择是自然的,因为这意味着如果输入点为(x
,y
,1),则输出点将总是有齐次坐标1,因此所得到的变换是只是2x2变换加上翻译).
因此,这将方程式减少为:
a1*x11 + a2*x12 + a3 = k1*y11 a4*x11 + a5*x12 + a6 = k1*y12 1 = k1 a1*x21 + a2*x22 + a3 = k2*y21 a4*x21 + a5*x22 + a6 = k2*y22 1 = k2 a1*x31 + a2*x32 + a3 = k3*y31 a4*x31 + a5*x32 + a6 = k3*y32 1 = k3
所以,k1
= k2
= k3
= 1.将这些插入并转换为矩阵形式会产生:
| x11 x12 1 0 0 0 | | a1 | | y11 | | x21 x22 1 0 0 0 | | a2 | | y21 | | x31 x32 1 0 0 0 | * | a3 | = | y31 | | 0 0 0 x11 x12 1 | | a4 | | y12 | | 0 0 0 x21 x22 1 | | a5 | | y22 | | 0 0 0 x31 x32 1 | | a6 | | y32 |
求解这个6x6方程组可以得到你的仿射变换矩阵A
.当且仅当源三角形的3个点不共线时,它将具有唯一的解决方案.