cam*_*mil 90
是.它叫做a tuple.
所以,相反的[1,2]是一个list和可以突变,(1,2)是tuple,不能.
更多的信息:
一个元素tuple不能通过编写实例化(1),而是需要编写(1,).这是因为解释器具有括号的各种其他用途.
你也可以完全取消括号:1,2与...相同(1,2)
请注意,元组不完全是不可变列表.单击此处以了解有关列表和元组之间差异的更多信息
blu*_*e10 25
这个问题值得一个现代的答案,因为类型注释和类型检查通过mypy变得越来越流行。
使用类型注释时,用元组替换 aList[T]可能不是理想的解决方案。从概念上讲,列表的泛型参数为 1,即它们具有单个泛型参数T(当然,该参数可以是Union[A, B, C, ...]用于解释异构类型列表的 a)。相反,元组本质上是可变参数泛型Tuple[A, B, C, ...]。这使得元组成为一个尴尬的列表替代品。
事实上,类型检查提供了另一种可能性:可以通过使用将变量注释为不可变列表typing.Sequence,它对应于不可变接口的类型collections.abc.Sequence。例如:
from typing import Sequence
def f(immutable_list: Sequence[str]) -> None:
# We want to prevent mutations like:
immutable_list.append("something")
mutable_list = ["a", "b", "c"]
f(mutable_list)
print(mutable_list)
Run Code Online (Sandbox Code Playgroud)
当然,就运行时行为而言,这不是一成不变的,即,Python 解释器会很乐意改变immutable_list,并且输出将是["a", "b", "c", "something"]。
但是,如果您的项目使用类似的类型检查器mypy,它将拒绝代码:
immutable_lists_1.py:6: error: "Sequence[str]" has no attribute "append"
Found 1 error in 1 file (checked 1 source file)
Run Code Online (Sandbox Code Playgroud)
因此,在幕后,您可以继续使用常规列表,但类型检查器可以有效地防止类型检查时的任何突变。
类似地,您可以阻止对列表成员的修改,例如在不可变数据类中(请注意,数据类上的字段分配frozen实际上是在运行时阻止的):
immutable_lists_1.py:6: error: "Sequence[str]" has no attribute "append"
Found 1 error in 1 file (checked 1 source file)
Run Code Online (Sandbox Code Playgroud)
相同的原理可以用于通过 的 dict typing.Mapping。
小智 9
这是一个 ImmutableList 实现。底层列表不会在任何直接数据成员中公开。仍然可以使用成员函数的闭包属性访问它。如果我们遵循不使用上述属性修改闭包内容的约定,则此实现将达到目的。这个 ImmutableList 类的实例可以在任何需要普通 python 列表的地方使用。
from functools import reduce
__author__ = 'hareesh'
class ImmutableList:
"""
An unmodifiable List class which uses a closure to wrap the original list.
Since nothing is truly private in python, even closures can be accessed and
modified using the __closure__ member of a function. As, long as this is
not done by the client, this can be considered as an unmodifiable list.
This is a wrapper around the python list class
which is passed in the constructor while creating an instance of this class.
The second optional argument to the constructor 'copy_input_list' specifies
whether to make a copy of the input list and use it to create the immutable
list. To make the list truly immutable, this has to be set to True. The
default value is False, which makes this a mere wrapper around the input
list. In scenarios where the input list handle is not available to other
pieces of code, for modification, this approach is fine. (E.g., scenarios
where the input list is created as a local variable within a function OR
it is a part of a library for which there is no public API to get a handle
to the list).
The instance of this class can be used in almost all scenarios where a
normal python list can be used. For eg:
01. It can be used in a for loop
02. It can be used to access elements by index i.e. immList[i]
03. It can be clubbed with other python lists and immutable lists. If
lst is a python list and imm is an immutable list, the following can be
performed to get a clubbed list:
ret_list = lst + imm
ret_list = imm + lst
ret_list = imm + imm
04. It can be multiplied by an integer to increase the size
(imm * 4 or 4 * imm)
05. It can be used in the slicing operator to extract sub lists (imm[3:4] or
imm[:3] or imm[4:])
06. The len method can be used to get the length of the immutable list.
07. It can be compared with other immutable and python lists using the
>, <, ==, <=, >= and != operators.
08. Existence of an element can be checked with 'in' clause as in the case
of normal python lists. (e.g. '2' in imm)
09. The copy, count and index methods behave in the same manner as python
lists.
10. The str() method can be used to print a string representation of the
list similar to the python list.
"""
@staticmethod
def _list_append(lst, val):
"""
Private utility method used to append a value to an existing list and
return the list itself (so that it can be used in funcutils.reduce
method for chained invocations.
@param lst: List to which value is to be appended
@param val: The value to append to the list
@return: The input list with an extra element added at the end.
"""
lst.append(val)
return lst
@staticmethod
def _methods_impl(lst, func_id, *args):
"""
This static private method is where all the delegate methods are
implemented. This function should be invoked with reference to the
input list, the function id and other arguments required to
invoke the function
@param list: The list that the Immutable list wraps.
@param func_id: should be the key of one of the functions listed in the
'functions' dictionary, within the method.
@param args: Arguments required to execute the function. Can be empty
@return: The execution result of the function specified by the func_id
"""
# returns iterator of the wrapped list, so that for loop and other
# functions relying on the iterable interface can work.
_il_iter = lambda: lst.__iter__()
_il_get_item = lambda: lst[args[0]] # index access method.
_il_len = lambda: len(lst) # length of the list
_il_str = lambda: lst.__str__() # string function
# Following represent the >, < , >=, <=, ==, != operators.
_il_gt = lambda: lst.__gt__(args[0])
_il_lt = lambda: lst.__lt__(args[0])
_il_ge = lambda: lst.__ge__(args[0])
_il_le = lambda: lst.__le__(args[0])
_il_eq = lambda: lst.__eq__(args[0])
_il_ne = lambda: lst.__ne__(args[0])
# The following is to check for existence of an element with the
# in clause.
_il_contains = lambda: lst.__contains__(args[0])
# * operator with an integer to multiply the list size.
_il_mul = lambda: lst.__mul__(args[0])
# + operator to merge with another list and return a new merged
# python list.
_il_add = lambda: reduce(
lambda x, y: ImmutableList._list_append(x, y), args[0], list(lst))
# Reverse + operator, to have python list as the first operand of the
# + operator.
_il_radd = lambda: reduce(
lambda x, y: ImmutableList._list_append(x, y), lst, list(args[0]))
# Reverse * operator. (same as the * operator)
_il_rmul = lambda: lst.__mul__(args[0])
# Copy, count and index methods.
_il_copy = lambda: lst.copy()
_il_count = lambda: lst.count(args[0])
_il_index = lambda: lst.index(
args[0], args[1], args[2] if args[2] else len(lst))
functions = {0: _il_iter, 1: _il_get_item, 2: _il_len, 3: _il_str,
4: _il_gt, 5: _il_lt, 6: _il_ge, 7: _il_le, 8: _il_eq,
9: _il_ne, 10: _il_contains, 11: _il_add, 12: _il_mul,
13: _il_radd, 14: _il_rmul, 15: _il_copy, 16: _il_count,
17: _il_index}
return functions[func_id]()
def __init__(self, input_lst, copy_input_list=False):
"""
Constructor of the Immutable list. Creates a dynamic function/closure
that wraps the input list, which can be later passed to the
_methods_impl static method defined above. This is
required to avoid maintaining the input list as a data member, to
prevent the caller from accessing and modifying it.
@param input_lst: The input list to be wrapped by the Immutable list.
@param copy_input_list: specifies whether to clone the input list and
use the clone in the instance. See class documentation for more
details.
@return:
"""
assert(isinstance(input_lst, list))
lst = list(input_lst) if copy_input_list else input_lst
self._delegate_fn = lambda func_id, *args: \
ImmutableList._methods_impl(lst, func_id, *args)
# All overridden methods.
def __iter__(self): return self._delegate_fn(0)
def __getitem__(self, index): return self._delegate_fn(1, index)
def __len__(self): return self._delegate_fn(2)
def __str__(self): return self._delegate_fn(3)
def __gt__(self, other): return self._delegate_fn(4, other)
def __lt__(self, other): return self._delegate_fn(5, other)
def __ge__(self, other): return self._delegate_fn(6, other)
def __le__(self, other): return self._delegate_fn(7, other)
def __eq__(self, other): return self._delegate_fn(8, other)
def __ne__(self, other): return self._delegate_fn(9, other)
def __contains__(self, item): return self._delegate_fn(10, item)
def __add__(self, other): return self._delegate_fn(11, other)
def __mul__(self, other): return self._delegate_fn(12, other)
def __radd__(self, other): return self._delegate_fn(13, other)
def __rmul__(self, other): return self._delegate_fn(14, other)
def copy(self): return self._delegate_fn(15)
def count(self, value): return self._delegate_fn(16, value)
def index(self, value, start=0, stop=0):
return self._delegate_fn(17, value, start, stop)
def main():
lst1 = ['a', 'b', 'c']
lst2 = ['p', 'q', 'r', 's']
imm1 = ImmutableList(lst1)
imm2 = ImmutableList(lst2)
print('Imm1 = ' + str(imm1))
print('Imm2 = ' + str(imm2))
add_lst1 = lst1 + imm1
print('Liist + Immutable List: ' + str(add_lst1))
add_lst2 = imm1 + lst2
print('Immutable List + List: ' + str(add_lst2))
add_lst3 = imm1 + imm2
print('Immutable Liist + Immutable List: ' + str(add_lst3))
is_in_list = 'a' in lst1
print("Is 'a' in lst1 ? " + str(is_in_list))
slice1 = imm1[2:]
slice2 = imm2[2:4]
slice3 = imm2[:3]
print('Slice 1: ' + str(slice1))
print('Slice 2: ' + str(slice2))
print('Slice 3: ' + str(slice3))
imm1_times_3 = imm1 * 3
print('Imm1 Times 3 = ' + str(imm1_times_3))
three_times_imm2 = 3 * imm2
print('3 Times Imm2 = ' + str(three_times_imm2))
# For loop
print('Imm1 in For Loop: ', end=' ')
for x in imm1:
print(x, end=' ')
print()
print("3rd Element in Imm1: '" + imm1[2] + "'")
# Compare lst1 and imm1
lst1_eq_imm1 = lst1 == imm1
print("Are lst1 and imm1 equal? " + str(lst1_eq_imm1))
imm2_eq_lst1 = imm2 == lst1
print("Are imm2 and lst1 equal? " + str(imm2_eq_lst1))
imm2_not_eq_lst1 = imm2 != lst1
print("Are imm2 and lst1 different? " + str(imm2_not_eq_lst1))
# Finally print the immutable lists again.
print("Imm1 = " + str(imm1))
print("Imm2 = " + str(imm2))
# The following statemetns will give errors.
# imm1[3] = 'h'
# print(imm1)
# imm1.append('d')
# print(imm1)
if __name__ == '__main__':
main()
Run Code Online (Sandbox Code Playgroud)
您可以使用二元元组模拟 Lisp 风格的不可变单向链表(注意:这与 any-element 元组 answer 不同,后者创建的元组不太灵活):
nil = ()
cons = lambda ele, l: (ele, l)
Run Code Online (Sandbox Code Playgroud)
例如,对于列表[1, 2, 3],您将拥有以下内容:
l = cons(1, cons(2, cons(3, nil))) # (1, (2, (3, ())))
Run Code Online (Sandbox Code Playgroud)
你的标准 car和cdr功能很简单:
car = lambda l: l[0]
cdr = lambda l: l[1]
Run Code Online (Sandbox Code Playgroud)
由于此列表是单链接的,因此追加到前面是 O(1)。由于这个列表是不可变的,如果列表中的底层元素也是不可变的,那么您可以安全地共享任何子列表以在另一个列表中重用。
小智 5
但如果存在数组和元组的元组,那么元组内的数组是可以修改的。
>>> a
([1, 2, 3], (4, 5, 6))
>>> a[0][0] = 'one'
>>> a
(['one', 2, 3], (4, 5, 6))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
50973 次 |
| 最近记录: |