嗨所以我使用python,我正在尝试创建一个功能,让我生成由2个字母组成的单词.我还想计算生成的字数实际上是多少.
这是我到目前为止:
alphabet = ('a','b','c','d','e','f','g','h','i','j','k','l','m','n','o',
'p','q','r','s','t','u','v','w','x','y','z')
count1 = 0
text = " "
def find2LetterWords():
for letter in alphabet:
text += letter
for letter in alphabet:
text +=letter
print text
Run Code Online (Sandbox Code Playgroud)
这是我到目前为止编写的代码,我知道它不对.我只是在尝试.所以,如果你能帮助我,那就太好了.谢谢.
product从itertools模块中获取正是您生成所有可能的双字母单词列表所需的内容.
from itertools import product
alphabet = ('a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z')
two_letter_words = product(alphabet, alphabet)
for word in two_letter_words:
print word
Run Code Online (Sandbox Code Playgroud)
要比较字典中的哪一个,您需要从其他地方获取
另一种方式,列表理解:
words = [x+y for x in alphabet for y in alphabet]
Run Code Online (Sandbox Code Playgroud)
或者自己不输入字母:
from string import ascii_lowercase as a
words = [x+y for x in a for y in a]
Run Code Online (Sandbox Code Playgroud)
让我们对xvatar,Toote和我的答案进行比较:
from itertools import product
from string import ascii_lowercase as a
import timeit
def nestedFor():
w = []
for l1 in a:
for l2 in a:
word = l1+l2
w.append(word)
return w
def nestedForIter():
w = []
for l1 in a:
for l2 in a:
yield l1+l2
def withProduct():
return product(a,a)
def listComp():
return [x+y for x in a for y in a]
def generatorComp():
return (x+y for x in a for y in a)
# return list
t1 = timeit.Timer(stmt="nestedFor()",
setup = "from __main__ import nestedFor")
t2 = timeit.Timer(stmt="list(withProduct())",
setup = "from __main__ import withProduct")
t3 = timeit.Timer(stmt="listComp()",
setup = "from __main__ import listComp")
# return iterator
t4 = timeit.Timer(stmt="nestedForIter()",
setup = "from __main__ import nestedForIter")
t5 = timeit.Timer(stmt="withProduct()",
setup = "from __main__ import withProduct")
t6 = timeit.Timer(stmt="generatorComp()",
setup = "from __main__ import generatorComp")
n = 100000
print 'Methods returning lists:'
print "Nested for loops: %.3f" % t1.timeit(n)
print "list(product): %.3f" % t2.timeit(n)
print "List comprehension: %.3f\n" % t3.timeit(n)
print 'Methods returning iterators:'
print "Nested for iterator: %.3f" % t4.timeit(n)
print "itertools.product: %.3f" % t5.timeit(n)
print "Generator comprehension: %.3f\n" % t6.timeit(n)
Run Code Online (Sandbox Code Playgroud)
结果:
返回列表的方法:
嵌套for循环:13.362
list(product)
:4.578 List comprehension:7.231返回生成器的方法:
嵌套迭代器:0.045
itertools.product:0.212
生成器理解:0.066
换句话说,itertools.product如果你真的需要一个完整的清单,一定要使用.然而,生成器更快并且需要更少的内存,并且可能就足够了.
作为迭代器,itertools.product的相对较慢是意外的,考虑到文档说它等同于生成器表达式中的嵌套for循环.似乎有一些开销.