我正在尝试使用多个参数来定义具有多个参数的函数.使用currying,我可以减少在逐点产品setoid上定义函数的问题:
module Foo where
open import Quotient
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (proof-irrelevance)
private
open import Relation.Binary.Product.Pointwise
open import Data.Product
_×-quot_ : ? {c ?} {S : Setoid c ?} ? Quotient S ? Quotient S ? Quotient (S ×-setoid S)
_×-quot_ {S = S} = rec S (? x ? rec S (? y ? [ x , y ])
(? {y} {y?} y?y? ? [ refl , y?y? ]-cong))
(? {x} {x?} x?x? ? extensionality (elim _ _ (? _ ? [ x?x? , refl ]-cong)
(? _ ? proof-irrelevance _ _)))
where
open Setoid S
postulate extensionality : P.Extensionality _ _
Run Code Online (Sandbox Code Playgroud)
我的问题是,有没有办法证明×-quot没有假定延伸性的健全性?
您需要扩展性,因为您选择的P参数值rec是一个函数类型。如果您避免这种情况并使用Quotient类型P代替,您可以这样做:
module Quotients where
open import Quotient
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (proof-irrelevance; _?_)
private
open import Relation.Binary.Product.Pointwise
open import Data.Product
open import Function.Equality
map-quot : ? {c? ?? c? ??} {A : Setoid c? ??} {B : Setoid c? ??} ? A ? B ? Quotient A ? Quotient B
map-quot f = rec _ (? x ? [ f ?$? x ]) (? x?y ? [ cong f x?y ]-cong)
map-quot-cong : ? {c? ?? c? ??} {A : Setoid c? ??} {B : Setoid c? ??} ?
let open Setoid (A ? B) renaming (_?_ to _?_) in
(f? f? : A ? B) ? (f? ? f?) ? (x : Quotient A) ? map-quot f? x ? map-quot f? x
map-quot-cong {A = A} {B = B} f? f? eq x =
elim _
(? x ? map-quot f? x ? map-quot f? x)
(? x' ? [ eq (Setoid.refl A) ]-cong)
(? x?y ? proof-irrelevance _ _)
x
_×-quot?_ : ? {c ?} {A B : Setoid c ?} ? Quotient A ? Quotient B ? Quotient (A ×-setoid B)
_×-quot?_ {A = A} {B = B} qx qy = rec A (? x ? map-quot (f x) qy)
(? {x} {x?} x?x? ? map-quot-cong (f x) (f x?) (? eq ? x?x? , eq) qy) qx
where
module A = Setoid A
f = ? x ? record { _?$?_ = _,_ x; cong = ? eq ? (A.refl , eq) }
Run Code Online (Sandbox Code Playgroud)
还有另一种证明它的方法,通过_<$>_(我首先做了并决定不扔掉):
infixl 3 _<$>_
_<$>_ : ? {c? ?? c? ??} {A : Setoid c? ??} {B : Setoid c? ??} ? Quotient (A ? B) ? Quotient A ? Quotient B
_<$>_ {A = A} {B = B} qf qa =
rec (A ? B) {P = Quotient B}
(? x ? map-quot x qa)
(? {f?} {f?} f??f? ? map-quot-cong f? f? f??f? qa) qf
comma0 : ? {c ?} ? ? {A B : Setoid c ?} ? Setoid.Carrier (A ? B ? A ×-setoid B)
comma0 {A = A} {B = B} = record
{ _?$?_ = ? x ? record
{ _?$?_ = ? y ? x , y
; cong = ? eq ? Setoid.refl A , eq
}
; cong = ? eqa eqb ? eqa , eqb
}
comma : ? {c ?} ? ? {A B : Setoid c ?} ? Quotient (A ? B ? A ×-setoid B)
comma = [ comma0 ]
_×-quot?_ : ? {c ?} {A B : Setoid c ?} ? Quotient A ? Quotient B ? Quotient (A ×-setoid B)
a ×-quot? b = comma <$> a <$> b
Run Code Online (Sandbox Code Playgroud)
的另一个版本_<$>_,现在使用join:
map-quot-f : ? {c? ?? c? ??} {A : Setoid c? ??} {B : Setoid c? ??}
? Quotient A ? (A ? B) ? (P.setoid (Quotient B))
map-quot-f qa = record { _?$?_ = ? f ? map-quot f qa; cong = ? eq ? map-quot-cong _ _ eq qa }
join : ? {c ?} ? {S : Setoid c ?} ? Quotient (P.setoid (Quotient S)) ? Quotient S
join {S = S} q = rec (P.setoid (Quotient S)) (? x ? x) (? eq ? eq) q
infixl 3 _<$>_
_<$>_ : ? {c? ?? c? ??} {A : Setoid c? ??} {B : Setoid c? ??} ? Quotient (A ? B) ? Quotient A ? Quotient B
_<$>_ {A = A} {B = B} qf qa = join (map-quot (map-quot-f qa) qf)
Run Code Online (Sandbox Code Playgroud)
很明显,那里有某种 monad。多么好的发现!:)