Eri*_* W. 11 r time-series zoo xts
我有一个不规则的时间序列事件(帖子)使用xts
,我想计算在滚动的每周窗口(或每两周,或3天等)发生的事件的数量.数据如下所示:
postid
2010-08-04 22:28:07 867
2010-08-04 23:31:12 891
2010-08-04 23:58:05 901
2010-08-05 08:35:50 991
2010-08-05 13:28:02 1085
2010-08-05 14:14:47 1114
2010-08-05 14:21:46 1117
2010-08-05 15:46:24 1151
2010-08-05 16:25:29 1174
2010-08-05 23:19:29 1268
2010-08-06 12:15:42 1384
2010-08-06 15:22:06 1403
2010-08-07 10:25:49 1550
2010-08-07 18:58:16 1596
2010-08-07 21:15:44 1608
Run Code Online (Sandbox Code Playgroud)
应该产生类似的东西
nposts
2010-08-05 00:00:00 10
2010-08-06 00:00:00 9
2010-08-07 00:00:00 5
Run Code Online (Sandbox Code Playgroud)
为期2天的窗口.我已研究过rollapply
,apply.rolling
从PerformanceAnalytics
等,他们都承担一定的时间序列数据.我尝试将所有时间都改变到帖子发生的那一天,并使用类似于ddply
每天分组的东西,这让我很接近.但是,用户可能不会每天发布,因此时间序列仍然是不规则的.我可以用0填补空白,但这可能会使我的数据大量膨胀,而且已经非常大了.
我该怎么办?
这是使用xts的解决方案:
x <- structure(c(867L, 891L, 901L, 991L, 1085L, 1114L, 1117L, 1151L,
1174L, 1268L, 1384L, 1403L, 1550L, 1596L, 1608L), .Dim = c(15L, 1L),
index = structure(c(1280960887, 1280964672, 1280966285,
1280997350, 1281014882, 1281017687, 1281018106, 1281023184, 1281025529,
1281050369, 1281096942, 1281108126, 1281176749, 1281207496, 1281215744),
tzone = "", tclass = c("POSIXct", "POSIXt")), class = c("xts", "zoo"),
.indexCLASS = c("POSIXct", "POSIXt"), tclass = c("POSIXct", "POSIXt"),
.indexTZ = "", tzone = "")
# first count the number of observations each day
xd <- apply.daily(x, length)
# now sum the counts over a 2-day rolling window
x2d <- rollapply(xd, 2, sum)
# align times at the end of the period (if you want)
y <- align.time(x2d, n=60*60*24) # n is in seconds
Run Code Online (Sandbox Code Playgroud)
这似乎有效:
# n = number of days
n <- 30
# w = window width. In this example, w = 7 days
w <- 7
# I will simulate some data to illustrate the procedure
data <- rep(1:n, rpois(n, 2))
# Tabulate the number of occurences per day:
# (use factor() to be sure to have the days with zero observations included)
date.table <- table(factor(data, levels=1:n))
mat <- diag(n)
for (i in 2:w){
dim <- n+i-1
mat <- mat + diag(dim)[-((n+1):dim),-(1:(i-1))]
}
# And the answer is....
roll.mean.7days <- date.table %*% mat
Run Code Online (Sandbox Code Playgroud)
似乎并不太慢(尽管mat
矩阵将获得维度 n*n)。我尝试将 n=30 替换为 n=3000(这会创建一个包含 900 万个元素 = 72 MB 的矩阵),但在我的计算机上它仍然相当快。对于非常大的数据集,首先尝试子集......使用 Matrix 包(bandSparse)中的一些函数来创建矩阵也会更快mat
。