受@ gsk3关于重塑数据的问题的评论的启发,我开始对重组数据进行一些实验,其中变量名称具有字符后缀而不是数字后缀.
例如,我dadmomw将从其中一个UCLA ATS Stata学习网页加载数据集(参见网页上的"示例4").
这是数据集的样子:
library(foreign)
dadmom <- read.dta("https://stats.idre.ucla.edu/stat/stata/modules/dadmomw.dat")
dadmom
# famid named incd namem incm
# 1 1 Bill 30000 Bess 15000
# 2 2 Art 22000 Amy 18000
# 3 3 Paul 25000 Pat 50000
Run Code Online (Sandbox Code Playgroud)
当试图从这种宽格式重塑到很长时间时,我遇到了一个问题.这是我重塑数据的方法.
reshape(dadmom, direction="long", idvar=1, varying=2:5,
sep="", v.names=c("name", "inc"), timevar="dadmom",
times=c("d", "m"))
# famid dadmom name inc
# 1.d 1 d 30000 Bill
# 2.d 2 d 22000 Art
# 3.d 3 d 25000 Paul
# 1.m 1 m 15000 Bess
# 2.m 2 m 18000 Amy
# 3.m 3 m 50000 Pat
Run Code Online (Sandbox Code Playgroud)
注意"name"和"inc"的交换列名称; 改变v.names以c("inc", "name")不解决问题.
reshape想要以相当标准的方式命名列,似乎非常挑剔.例如,如果我首先重命名列,我可以正确地(并且容易地)重新整形数据:
dadmom2 <- dadmom # Just so we can continue experimenting with the original data
# Change the names of the last four variables to include a "."
names(dadmom2)[2:5] <- gsub("(d$|m$)", "\\.\\1", names(dadmom2)[2:5])
reshape(dadmom2, direction="long", idvar=1, varying=2:5,
timevar="dadmom")
# famid dadmom name inc
# 1.d 1 d Bill 30000
# 2.d 2 d Art 22000
# 3.d 3 d Paul 25000
# 1.m 1 m Bess 15000
# 2.m 2 m Amy 18000
# 3.m 3 m Pat 50000
Run Code Online (Sandbox Code Playgroud)
我的问题是:
reshape在重新整形之前,我是否可以使用基数R获得此结果而不更改变量名称?reshape?Tyl*_*ker 11
这有效(指定改变哪些列与谁一起):
reshape(dadmom, direction="long", varying=list(c(2, 4), c(3, 5)),
sep="", v.names=c("name", "inc"), timevar="dadmom",
times=c("d", "m"))
Run Code Online (Sandbox Code Playgroud)
所以你实际上在这里嵌套了重复的措施; 妈妈和爸爸的名字和公司.因为您有多个重复测量系列,所以必须提供一个list变量来告诉reshape哪个组在另一个组上堆叠.
因此,解决这个问题的两种方法是像我一样提供一个列表,或者按照R野兽喜欢它们的方式重命名列.
有关详细信息,请参阅我最近的博客reshape(特别是第二个链接处理此问题):
虽然这个问题专门针对基础R,但了解其他可以帮助您实现相同类型结果的方法也很有用.
一种替代reshape或merged.stack将要使用"dplyr"和"tidry"的组合,如下所示:
dadmom %>%
gather(variable, value, -famid) %>% ## Make the entire dataset long
separate(variable, into = c("var", "time"), ## Split "variable" column into two...
sep = "(?<=name|inc)", perl = TRUE) %>% ## ... using regex to split the values
spread(var, value, convert = TRUE) ## Make result wide, converting type
# famid time inc name
# 1 1 d 30000 Bill
# 2 1 m 15000 Bess
# 3 2 d 22000 Art
# 4 2 m 18000 Amy
# 5 3 d 25000 Paul
# 6 3 m 50000 Pat
Run Code Online (Sandbox Code Playgroud)
另一种选择是使用melt"data.table",如下所示:
library(data.table)
melt(as.data.table(dadmom), ## melt here requres a data.table
measure = patterns("name", "inc"), ## identify columns by patterns
value.name = c("name", "inc"))[ ## specify the resulting variable names
## melt creates a numeric "variable" value. Replace with factored labels
, variable := factor(variable, labels = c("d", "m"))][]
# famid variable name inc
# 1: 1 d Bill 30000
# 2: 2 d Art 22000
# 3: 3 d Paul 25000
# 4: 1 m Bess 15000
# 5: 2 m Amy 18000
# 6: 3 m Pat 50000
Run Code Online (Sandbox Code Playgroud)
这些方法与之相比如何merged.stack?
melt 炽热得快. reshape)可能是因为必须使数据变长,然后变宽,然后执行类型转换.但是,一些用户喜欢它的逐步方法.merged.stack.只需看看获得结果所需的代码;-)merged.stack但是,可能会受益于简化的更新,这与此功能类似
ReshapeLong_ <- function(indt, stubs, sep = NULL) {
if (!is.data.table(indt)) indt <- as.data.table(indt)
mv <- lapply(stubs, function(y) grep(sprintf("^%s", y), names(indt)))
levs <- unique(gsub(paste(stubs, collapse="|"), "", names(indt)[unlist(mv)]))
if (!is.null(sep)) levs <- gsub(sprintf("^%s", sep), "", levs, fixed = TRUE)
melt(indt, measure = mv, value.name = stubs)[
, variable := factor(variable, labels = levs)][]
}
Run Code Online (Sandbox Code Playgroud)
然后可以用作:
ReshapeLong_(dadmom, stubs = c("name", "inc"))
Run Code Online (Sandbox Code Playgroud)
这些方法与基础R相比如何reshape?
reshape无法处理不平衡的面板数据集.例如,在下面的测试中,参见"mydf2"而不是"mydf".这是一些示例数据."mydf"是平衡的."mydf2"不平衡.
set.seed(1)
x <- 10000
mydf <- mydf2 <- data.frame(
id_1 = 1:x, id_2 = c("A", "B"), varAa = sample(letters, x, TRUE),
varAb = sample(letters, x, TRUE), varAc = sample(letters, x, TRUE),
varBa = sample(10, x, TRUE), varBb = sample(10, x, TRUE),
varBc = sample(10, x, TRUE), varCa = rnorm(x), varCb = rnorm(x),
varCc = rnorm(x), varDa = rnorm(x), varDb = rnorm(x), varDc = rnorm(x))
mydf2 <- mydf2[-c(9, 14)] ## Make data unbalanced
Run Code Online (Sandbox Code Playgroud)
以下是一些要测试的函数:
f1 <- function(mydf) {
mydf %>%
gather(variable, value, starts_with("var")) %>%
separate(variable, into = c("var", "time"),
sep = "(?<=varA|varB|varC|varD)", perl = TRUE) %>%
spread(var, value, convert = TRUE)
}
f2 <- function(mydf) {
melt(as.data.table(mydf),
measure = patterns(paste0("var", c("A", "B", "C", "D"))),
value.name = paste0("var", c("A", "B", "C", "D")))[
, variable := factor(variable, labels = c("a", "b", "c"))][]
}
f3 <- function(mydf) {
merged.stack(mydf, var.stubs = paste0("var", c("A", "B", "C", "D")), sep = "var.stubs")
}
## Won't run with "mydf2". Should run with "mydf"
f4 <- function(mydf) {
reshape(mydf, direction = "long",
varying = lapply(c("varA", "varB", "varC", "varD"),
function(x) grep(x, names(mydf))),
sep = "", v.names = paste0("var", c("A", "B", "C", "D")),
timevar="time", times = c("a", "b", "c"))
}
Run Code Online (Sandbox Code Playgroud)
测试性能:
library(microbenchmark)
microbenchmark(f1(mydf), f2(mydf), f3(mydf), f4(mydf))
# Unit: milliseconds
# expr min lq mean median uq max neval
# f1(mydf) 463.006547 492.073086 528.533319 514.189548 538.910756 867.93356 100
# f2(mydf) 3.737321 4.108376 6.674066 4.332391 4.761681 47.71142 100
# f3(mydf) 60.211254 64.766770 86.812077 87.040087 92.841747 262.89409 100
# f4(mydf) 40.596455 43.753431 61.006337 48.963145 69.983623 230.48449 100
Run Code Online (Sandbox Code Playgroud)
观察:
reshape将无法处理重塑"mydf2".reshape给出合理的表现.注意:由于发布我的最后答案与方法上的差异之间的时间差异,我想我会将此作为一个新答案分享.