我有一个在行上DataFrame使用 a的 Pandas MultiIndex:
index = pandas.MultiIndex.from_tuples(list(itertools.product(range(3), range(3))))
df = pandas.DataFrame(numpy.random.randn(9,3), index=index, columns=['A', 'B', 'C'])
A B C
0 0 2.400417 0.698638 1.231540
1 -0.023154 -2.110450 0.774964
2 -1.282392 -0.062794 1.471655
1 0 -1.081853 0.261876 -1.771075
1 -2.013747 -0.377957 -0.393802
2 1.711172 -0.552468 1.018727
2 0 0.155821 -0.222691 0.496586
1 0.563638 -0.756709 1.050212
2 -1.446159 -0.891549 0.256695
Run Code Online (Sandbox Code Playgroud)
我想在索引的第一级打乱这个 DataFrame,所以可能的结果是:
A B C
1 0 -1.081853 0.261876 -1.771075
1 -2.013747 -0.377957 -0.393802
2 1.711172 -0.552468 1.018727
0 0 2.400417 0.698638 1.231540
1 -0.023154 -2.110450 0.774964
2 -1.282392 -0.062794 1.471655
2 0 0.155821 -0.222691 0.496586
1 0.563638 -0.756709 1.050212
2 -1.446159 -0.891549 0.256695
Run Code Online (Sandbox Code Playgroud)
reindex当传递与所需顺序匹配的重新排序的元组数组时,该方法可以完成此操作。此时,可以根据您的问题进行重新排序。例如:
In [38]: df
Out[38]:
A B C
0 0 -1.725337 0.111493 0.178294
1 -1.809003 -0.614219 -0.931909
2 0.621427 -0.186233 0.254727
1 0 -1.322863 1.242415 1.375579
1 0.249738 -1.280204 0.356491
2 -0.743671 0.325841 -0.167772
2 0 -0.070937 0.401172 -1.790801
1 1.433794 2.257198 1.848435
2 -1.021557 -1.054363 -1.485536
In [39]: neworder = [1, 0, 2]
In [41]: newindex = sorted(df.index, key=lambda x: neworder.index(x[0]))
In [42]: newindex
Out[42]:
[(1L, 0L),
(1L, 1L),
(1L, 2L),
(0L, 0L),
(0L, 1L),
(0L, 2L),
(2L, 0L),
(2L, 1L),
(2L, 2L)]
In [43]: df.reindex(newindex)
Out[43]:
A B C
1 0 -1.322863 1.242415 1.375579
1 0.249738 -1.280204 0.356491
2 -0.743671 0.325841 -0.167772
0 0 -1.725337 0.111493 0.178294
1 -1.809003 -0.614219 -0.931909
2 0.621427 -0.186233 0.254727
2 0 -0.070937 0.401172 -1.790801
1 1.433794 2.257198 1.848435
2 -1.021557 -1.054363 -1.485536
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2851 次 |
| 最近记录: |