为缺少时间步骤添加行的最快方法?

Mai*_*ura 33 r plyr dataframe data.table

我的数据集中有一列,其中时间段(Time)是从ab开始的整数.有时,任何特定组都可能缺少时间段.我想用这些行填写NA.以下是1(几千个)组的示例数据.

structure(list(Id = c(1, 1, 1, 1), Time = c(1, 2, 4, 5), Value = c(0.568780482159894, 
-0.7207749516298, 1.24258192959273, 0.682123081696789)), .Names = c("Id", 
"Time", "Value"), row.names = c(NA, 4L), class = "data.frame")


  Id Time      Value
1  1    1  0.5687805
2  1    2 -0.7207750
3  1    4  1.2425819
4  1    5  0.6821231
Run Code Online (Sandbox Code Playgroud)

如您所见,时间3缺失.通常一个或多个可能会丢失.我可以自己解决这个问题,但恐怕我不会以最有效的方式做到这一点.我的方法是创建一个函数:

生成时间段从序min(Time)max(Time)

然后做一个setdiff抓取缺失的Time值.

将该向量转换为a data.frame

拉出唯一标识符变量(Id以及上面未列出的其他变量),并将其添加到此data.frame中.

合并两者.

从功能返回.

因此整个过程将按如下方式执行:

   # Split the data into individual data.frames by Id.
    temp_list <- dlply(original_data, .(Id)) 
    # pad each data.frame
    tlist2 <- llply(temp_list, my_pad_function)
    # collapse the list back to a data.frame
    filled_in_data <- ldply(tlist2)
Run Code Online (Sandbox Code Playgroud)

更好的方法来实现这一目标

Mat*_*wle 36

跟随Ben Barnes的评论并从他的开始mydf3:

DT = as.data.table(mydf3)
setkey(DT,Id,Time)
DT[CJ(unique(Id),seq(min(Time),max(Time)))]
      Id Time        Value Id2
 [1,]  1    1 -0.262482283   2
 [2,]  1    2 -1.423935165   2
 [3,]  1    3  0.500523295   1
 [4,]  1    4 -1.912687398   1
 [5,]  1    5 -1.459766444   2
 [6,]  1    6 -0.691736451   1
 [7,]  1    7           NA  NA
 [8,]  1    8  0.001041489   2
 [9,]  1    9  0.495820559   2
[10,]  1   10 -0.673167744   1
First 10 rows of 12800 printed. 

setkey(DT,Id,Id2,Time)
DT[CJ(unique(Id),unique(Id2),seq(min(Time),max(Time)))]
      Id Id2 Time      Value
 [1,]  1   1    1         NA
 [2,]  1   1    2         NA
 [3,]  1   1    3  0.5005233
 [4,]  1   1    4 -1.9126874
 [5,]  1   1    5         NA
 [6,]  1   1    6 -0.6917365
 [7,]  1   1    7         NA
 [8,]  1   1    8         NA
 [9,]  1   1    9         NA
[10,]  1   1   10 -0.6731677
First 10 rows of 25600 printed. 
Run Code Online (Sandbox Code Playgroud)

CJ代表Cross Join,请参阅?CJ.带有NAs 的填充是因为nomatch默认情况下是NA.设置nomatch0取消不匹配.如果不是用NAs 填充,而是需要主流行,只需添加即可roll=TRUE.这比用NAs 填充更有效,然后填充NAs.请参阅rollin 的说明?data.table.

setkey(DT,Id,Time)
DT[CJ(unique(Id),seq(min(Time),max(Time))),roll=TRUE]
      Id Time        Value Id2
 [1,]  1    1 -0.262482283   2
 [2,]  1    2 -1.423935165   2
 [3,]  1    3  0.500523295   1
 [4,]  1    4 -1.912687398   1
 [5,]  1    5 -1.459766444   2
 [6,]  1    6 -0.691736451   1
 [7,]  1    7 -0.691736451   1
 [8,]  1    8  0.001041489   2
 [9,]  1    9  0.495820559   2
[10,]  1   10 -0.673167744   1
First 10 rows of 12800 printed. 

setkey(DT,Id,Id2,Time)
DT[CJ(unique(Id),unique(Id2),seq(min(Time),max(Time))),roll=TRUE]
      Id Id2 Time      Value
 [1,]  1   1    1         NA
 [2,]  1   1    2         NA
 [3,]  1   1    3  0.5005233
 [4,]  1   1    4 -1.9126874
 [5,]  1   1    5 -1.9126874
 [6,]  1   1    6 -0.6917365
 [7,]  1   1    7 -0.6917365
 [8,]  1   1    8 -0.6917365
 [9,]  1   1    9 -0.6917365
[10,]  1   1   10 -0.6731677
First 10 rows of 25600 printed. 
Run Code Online (Sandbox Code Playgroud)

  • @sirallen参见例如[每组填充时间序列的有效方法](/sf/ask/3269866561/?noredirect=1&lq=1)和[按组填写缺失日期](/sf/ask/2205181401/#31502628) (2认同)

aus*_*sen 7

你可以用tidyr它.

使用tidyr::complete填写行的Time,默认情况下该值与填充NA.

创建数据

我扩展了样本数据以显示它适用于多个Ids,甚至在Id整个范围内Time都不存在.

library(dplyr)
library(tidyr)


df <- tibble(
  Id = c(1, 1, 1, 1, 2, 2, 2),
  Time = c(1, 2, 4, 5, 2, 3, 5),
  Value = c(0.56, -0.72, 1.24, 0.68, 1.46, 0.74, 0.99)
)

df
#> # A tibble: 7 x 3
#>      Id  Time Value
#>   <dbl> <dbl> <dbl>
#> 1     1     1  0.56
#> 2     1     2 -0.72
#> 3     1     4  1.24
#> 4     1     5  0.68
#> 5     2     2  1.46
#> 6     2     3  0.74
#> 7     2     5  0.99
Run Code Online (Sandbox Code Playgroud)

填写缺失的行

df %>% complete(nesting(Id), Time = seq(min(Time), max(Time), 1L))

#> # A tibble: 10 x 3
#>       Id  Time Value
#>    <dbl> <dbl> <dbl>
#> 1      1     1  0.56
#> 2      1     2 -0.72
#> 3      1     3    NA
#> 4      1     4  1.24
#> 5      1     5  0.68
#> 6      2     1    NA
#> 7      2     2  1.46
#> 8      2     3  0.74
#> 9      2     4    NA
#> 10     2     5  0.99
Run Code Online (Sandbox Code Playgroud)


Ben*_*nes 5

请参阅马修道尔的回答(现在,希望在上面)。

这是使用data.table包的东西,当有多个 ID 变量时它可能会有所帮助。它也可能比 更快merge,具体取决于您想要的结果。我会对基准测试和/或建议的改进感兴趣。

首先,用两个ID变量创建一些要求更高的数据

library(data.table)

set.seed(1)

mydf3<-data.frame(Id=sample(1:100,10000,replace=TRUE),
  Value=rnorm(10000))
mydf3<-mydf3[order(mydf3$Id),]

mydf3$Time<-unlist(by(mydf3,mydf3$Id,
  function(x)sample(1:(nrow(x)+3),nrow(x)),simplify=TRUE))

mydf3$Id2<-sample(1:2,nrow(mydf3),replace=TRUE)
Run Code Online (Sandbox Code Playgroud)

创建一个函数(这已被编辑- 查看历史)

padFun<-function(data,idvars,timevar){
# Coerce ID variables to character
  data[,idvars]<-lapply(data[,idvars,drop=FALSE],as.character)
# Create global ID variable of all individual ID vars pasted together
  globalID<-Reduce(function(...)paste(...,sep="SOMETHINGWACKY"),
    data[,idvars,drop=FALSE])
# Create data.frame of all possible combinations of globalIDs and times
  allTimes<-expand.grid(globalID=unique(globalID),
    allTime=min(data[,timevar]):max(data[,timevar]),
    stringsAsFactors=FALSE)
# Get the original ID variables back
  allTimes2<-data.frame(allTimes$allTime,do.call(rbind,
    strsplit(allTimes$globalID,"SOMETHINGWACKY")),stringsAsFactors=FALSE)
# Convert combinations data.frame to data.table with idvars and timevar as key
  allTimesDT<-data.table(allTimes2)
  setnames(allTimesDT,1:ncol(allTimesDT),c(timevar,idvars))
  setkeyv(allTimesDT,c(idvars,timevar))
# Convert data to data.table with same variables as key
  dataDT<-data.table(data,key=c(idvars,timevar))
# Join the two data.tables to create padding
  res<-dataDT[allTimesDT]
  return(res)
}
Run Code Online (Sandbox Code Playgroud)

使用功能

(padded2<-padFun(data=mydf3,idvars=c("Id"),timevar="Time"))

#       Id Time        Value Id2
#  [1,]  1    1 -0.262482283   2
#  [2,]  1    2 -1.423935165   2
#  [3,]  1    3  0.500523295   1
#  [4,]  1    4 -1.912687398   1
#  [5,]  1    5 -1.459766444   2
#  [6,]  1    6 -0.691736451   1
#  [7,]  1    7           NA  NA
#  [8,]  1    8  0.001041489   2
#  [9,]  1    9  0.495820559   2
# [10,]  1   10 -0.673167744   1
# First 10 rows of 12800 printed.

(padded<-padFun(data=mydf3,idvars=c("Id","Id2"),timevar="Time"))

#      Id Id2 Time      Value
#  [1,]  1   1    1         NA
#  [2,]  1   1    2         NA
#  [3,]  1   1    3  0.5005233
#  [4,]  1   1    4 -1.9126874
#  [5,]  1   1    5         NA
#  [6,]  1   1    6 -0.6917365
#  [7,]  1   1    7         NA
#  [8,]  1   1    8         NA
#  [9,]  1   1    9         NA
# [10,]  1   1   10 -0.6731677
# First 10 rows of 25600 printed.
Run Code Online (Sandbox Code Playgroud)

在与原始数据合并之前,edited 函数将 globalID 拆分为组合 data.frame 中的组成部分。这应该(我认为)更好。


Al *_* R. 0

我的一般方法是使用freqTable <- as.data.frame(table(idvar1, idvar2, idvarN))then 拉出其中的行Freq==0,根据需要填充,然后堆栈回原始数据。