sav*_*enr 433 python multi-index dataframe pandas pandas-groupby
我从这样的输入数据开始
df1 = pandas.DataFrame( {
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"] } )
Run Code Online (Sandbox Code Playgroud)
打印时显示如下:
City Name
0 Seattle Alice
1 Seattle Bob
2 Portland Mallory
3 Seattle Mallory
4 Seattle Bob
5 Portland Mallory
Run Code Online (Sandbox Code Playgroud)
分组很简单:
g1 = df1.groupby( [ "Name", "City"] ).count()
Run Code Online (Sandbox Code Playgroud)
和打印产生一个GroupBy对象:
City Name
Name City
Alice Seattle 1 1
Bob Seattle 2 2
Mallory Portland 2 2
Seattle 1 1
Run Code Online (Sandbox Code Playgroud)
但我最终想要的是另一个包含GroupBy对象中所有行的DataFrame对象.换句话说,我希望得到以下结果:
City Name
Name City
Alice Seattle 1 1
Bob Seattle 2 2
Mallory Portland 2 2
Mallory Seattle 1 1
Run Code Online (Sandbox Code Playgroud)
我无法在pandas文档中看到如何实现这一点.任何提示都会受到欢迎.
Wes*_*ney 474
g1这是一个DataFrame.它有一个分层索引,但是:
In [19]: type(g1)
Out[19]: pandas.core.frame.DataFrame
In [20]: g1.index
Out[20]:
MultiIndex([('Alice', 'Seattle'), ('Bob', 'Seattle'), ('Mallory', 'Portland'),
('Mallory', 'Seattle')], dtype=object)
Run Code Online (Sandbox Code Playgroud)
也许你想要这样的东西?
In [21]: g1.add_suffix('_Count').reset_index()
Out[21]:
Name City City_Count Name_Count
0 Alice Seattle 1 1
1 Bob Seattle 2 2
2 Mallory Portland 2 2
3 Mallory Seattle 1 1
Run Code Online (Sandbox Code Playgroud)
或类似的东西:
In [36]: DataFrame({'count' : df1.groupby( [ "Name", "City"] ).size()}).reset_index()
Out[36]:
Name City count
0 Alice Seattle 1
1 Bob Seattle 2
2 Mallory Portland 2
3 Mallory Seattle 1
Run Code Online (Sandbox Code Playgroud)
jez*_*ael 106
我想略微改变Wes给出的答案,因为版本0.16.2要求as_index=False.如果不设置它,则会得到一个空数据帧.
来源:
如果它们是命名列,则聚合函数不会返回聚合的组,
as_index=True默认情况下为when .分组列将是返回对象的索引.
as_index=False如果它们是命名列,则传递将返回您聚合的组.聚合函数是那些减少返回的对象的尺寸,例如:
mean,sum,size,count,std,var,sem,describe,first,last,nth,min,max.这就是当你这样做DataFrame.sum()并回来时会发生的事情Series.nth可以作为减速器或过滤器,请参见此处.
import pandas as pd
df1 = pd.DataFrame({"Name":["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"],
"City":["Seattle","Seattle","Portland","Seattle","Seattle","Portland"]})
print df1
#
# City Name
#0 Seattle Alice
#1 Seattle Bob
#2 Portland Mallory
#3 Seattle Mallory
#4 Seattle Bob
#5 Portland Mallory
#
g1 = df1.groupby(["Name", "City"], as_index=False).count()
print g1
#
# City Name
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
#
Run Code Online (Sandbox Code Playgroud)
编辑:
在版本0.17.1及更高版本,您可以使用subset的count和reset_index与参数name在size:
print df1.groupby(["Name", "City"], as_index=False ).count()
#IndexError: list index out of range
print df1.groupby(["Name", "City"]).count()
#Empty DataFrame
#Columns: []
#Index: [(Alice, Seattle), (Bob, Seattle), (Mallory, Portland), (Mallory, Seattle)]
print df1.groupby(["Name", "City"])[['Name','City']].count()
# Name City
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
print df1.groupby(["Name", "City"]).size().reset_index(name='count')
# Name City count
#0 Alice Seattle 1
#1 Bob Seattle 2
#2 Mallory Portland 2
#3 Mallory Seattle 1
Run Code Online (Sandbox Code Playgroud)
count和之间的差异size是size计算NaN值而count不是.
Sur*_*rya 13
简单地说,这应该完成任务:
import pandas as pd
grouped_df = df1.groupby( [ "Name", "City"] )
pd.DataFrame(grouped_df.size().reset_index(name = "Group_Count"))
Run Code Online (Sandbox Code Playgroud)
这里,grouped_df.size()提取唯一的groupby计数,reset_index()方法重置你想要的列的名称.最后,调用pandas Dataframe()函数来创建DataFrame对象.
也许我误解了这个问题,但是如果你想将groupby转换回数据帧,你可以使用.to_frame().当我这样做时我想重置索引,所以我也包括了那个部分.
示例代码与问题无关
df = df['TIME'].groupby(df['Name']).min()
df = df.to_frame()
df = df.reset_index(level=['Name',"TIME"])
Run Code Online (Sandbox Code Playgroud)
小智 7
下面的解决方案可能更简单:
df1.reset_index().groupby( [ "Name", "City"],as_index=False ).count()
Run Code Online (Sandbox Code Playgroud)
这会以与普通方法相同的顺序返回序数级别/索引groupby()。它与 @NehalJWani 在他的评论中发布的答案基本相同,但存储在一个变量中,并reset_index()调用它的方法。
fare_class = df.groupby(['Satisfaction Rating','Fare Class']).size().to_frame(name = 'Count')
fare_class.reset_index()
Run Code Online (Sandbox Code Playgroud)
此版本不仅返回相同的百分比数据(这对于统计数据很有用),而且还包含 lambda 函数。
fare_class_percent = df.groupby(['Satisfaction Rating', 'Fare Class']).size().to_frame(name = 'Percentage')
fare_class_percent.transform(lambda x: 100 * x/x.sum()).reset_index()
Satisfaction Rating Fare Class Percentage
0 Dissatisfied Business 14.624269
1 Dissatisfied Economy 36.469048
2 Satisfied Business 5.460425
3 Satisfied Economy 33.235294
Run Code Online (Sandbox Code Playgroud)
小智 6
我发现这对我有用.
import numpy as np
import pandas as pd
df1 = pd.DataFrame({
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"]})
df1['City_count'] = 1
df1['Name_count'] = 1
df1.groupby(['Name', 'City'], as_index=False).count()
Run Code Online (Sandbox Code Playgroud)
小智 5
我已经聚合了大量明智的数据并存储到数据框
almo_grp_data = pd.DataFrame({'Qty_cnt' :
almo_slt_models_data.groupby( ['orderDate','Item','State Abv']
)['Qty'].sum()}).reset_index()
Run Code Online (Sandbox Code Playgroud)
关键是使用reset_index()方法。
使用:
import pandas
df1 = pandas.DataFrame( {
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"] } )
g1 = df1.groupby( [ "Name", "City"] ).count().reset_index()
Run Code Online (Sandbox Code Playgroud)
现在,您在g1中有了新的数据框: