加速while循环嵌套在R中的for循环中

dpl*_*net 1 r

在RI中有以下示例模块,它重复一个for循环n时间:

function(n){
#inputs - n - number of results required
    #reserve n spaces for results
    r_num_successes <- 1:n

    #start looping n times
    for(i in 1:n){

        #set first uniform "random" deviate equal to 0.05 and number of successes to 0
        current_unif <- 0.05
        num_successes <- 0

        #start while loop that updates current_unif - it runs as long as 
        #current_unif is less than 0.95, increments num_successes each loop
        while(current_unif < 0.95){

            #set current_unif to a uniform random deviate between the
            #existing current_unif and 1
            current_unif <- runif(1,current_unif)
            num_successes <- num_successes + 1
        }

        #set the i-th element of the results vector to that final num_successes
        #generated by the while loop
        r_num_successes[i] <- num_successes
    }

            #output the mean of all the successes
    return(mean(r_num_successes))
}
Run Code Online (Sandbox Code Playgroud)

n变大时,这开始慢慢磨.有优化它的好方法吗?

Jos*_*ich 10

没有什么可以用纯R来显着提高速度.字节编译会给你一个小的改进,但你需要转移到编译代码以获得任何显着的速度增益.

更新:这是一个Rcpp解决方案,仅适用于Dirk :)

> nCode <- '
+   int N = as<int>(n);
+   std::vector<double> rns;
+ 
+   RNGScope scope;  // Initialize Random number generator
+ 
+   for(int i=0; i<N; i++) {
+     double current_unif = 0.05;
+     double num_successes = 0;
+     while(current_unif < 0.95) {
+       current_unif = ::Rf_runif(current_unif, 1.0);
+       num_successes++;
+     }
+     rns.push_back(num_successes);
+   }
+ 
+   double mean = std::accumulate(rns.begin(), rns.end(), 0.0) / rns.size();
+   return wrap(mean);  // Return to R
+ '
>
> library(inline)
> nFunRcpp <- cxxfunction(signature(n="int"), nCode, plugin="Rcpp")
> library(compiler)
> nFunCmp <- cmpfun(nFun)
> system.time(nFun(1e5))
   user  system elapsed 
  3.100   0.000   3.098 
> system.time(nFunCmp(1e5))
   user  system elapsed 
  2.120   0.000   2.114 
> system.time(nFunRcpp(1e5))
   user  system elapsed 
  0.010   0.000   0.016 
Run Code Online (Sandbox Code Playgroud)

  • 神圣的schmoly,Josh发布了一个Rcpp解决方案?超越真棒.我只有温顺的sugesstion:使用`rbenchmark :: benchmark()`作为时间.哦,也许预先分配矢量.但非常好的使用STL来计算平均值.颜色让我印象深刻:) (3认同)