读取二进制文件并循环遍历每个字节

Jes*_*ogt 345 python binary file-io

在Python中,如何读取二进制文件并循环遍历该文件的每个字节?

Sku*_*del 357

Python 2.4及更早版本

f = open("myfile", "rb")
try:
    byte = f.read(1)
    while byte != "":
        # Do stuff with byte.
        byte = f.read(1)
finally:
    f.close()
Run Code Online (Sandbox Code Playgroud)

Python 2.5-2.7

with open("myfile", "rb") as f:
    byte = f.read(1)
    while byte != "":
        # Do stuff with byte.
        byte = f.read(1)
Run Code Online (Sandbox Code Playgroud)

请注意,with语句在2.5以下的Python版本中不可用.要在v 2.5中使用它,您需要导入它:

from __future__ import with_statement
Run Code Online (Sandbox Code Playgroud)

在2.6中,这不是必需的.

Python 3

在Python 3中,它有点不同.我们将不再以字节模式从流中获取原始字符,而是字节对象,因此我们需要更改条件:

with open("myfile", "rb") as f:
    byte = f.read(1)
    while byte != b"":
        # Do stuff with byte.
        byte = f.read(1)
Run Code Online (Sandbox Code Playgroud)

或者正如benhoyt所说,跳过不等于并利用b""评估为假的事实.这使代码在2.6和3.x之间兼容,无需任何更改.如果从字节模式转换为文本或反向,它还可以避免更改条件.

with open("myfile", "rb") as f:
    byte = f.read(1)
    while byte:
        # Do stuff with byte.
        byte = f.read(1)
Run Code Online (Sandbox Code Playgroud)

  • 按字节顺序读取文件是一场性能噩梦.这不是python中可用的最佳解决方案.应谨慎使用此代码. (34认同)
  • @usr:文件对象是内部缓冲的,即便如此,这也是要求的.并非每个脚本都需要最佳性能. (5认同)
  • @mezhaka:所以你把它从read(1)改为read(bufsize),而在while循环中你做了for-in ......这个例子仍然存在. (3认同)
  • @usr:性能差异可能高达200倍[对于我尝试过的代码](http://stackoverflow.com/a/20014805/4279). (3认同)
  • 在Python 2.7.11中,这个答案中的代码比[@codeape的](http://stackoverflow.com/a/1035456/355230)中的代码大约**慢**4.5倍,在Python 3.5.1中大约是慢 2.9 倍(读取随机字节值的 128K 测试文件)。 (2认同)
  • @usr-它取决于要处理的字节数。如果它们足够少,那么“执行不佳”但易于理解的代码将是首选。在维护代码时,可以节省CPU周期的浪费,从而节省了“读取器CPU周期”。 (2认同)
  • @PedroLobito 请记住将代码放在末尾的 `while byte:` 和 `byte = f.read(1)` 之间。那里有一条评论说“#Do stuff with byte.”,你可以用 byte 做东西。 (2认同)

cod*_*ape 166

此生成器从文件中生成字节,以块的形式读取文件:

def bytes_from_file(filename, chunksize=8192):
    with open(filename, "rb") as f:
        while True:
            chunk = f.read(chunksize)
            if chunk:
                for b in chunk:
                    yield b
            else:
                break

# example:
for b in bytes_from_file('filename'):
    do_stuff_with(b)
Run Code Online (Sandbox Code Playgroud)

有关迭代器生成器的信息,请参阅Python文档.

  • 虽然已经比接受的答案快了,但是通过用chunk中的'yield'替换chunk中的整个最内部`来循环,可以加速另外20-25%.这种形式的`yield`是在Python 3.3中添加的(参见[_Yield Expressions_](https://docs.python.org/3/reference/expressions.html#yield-expressions)). (15认同)
  • @codeape正是我要找的.但是,你如何确定chunksize?它可以是任意值吗? (3认同)
  • @swdev:该示例使用8192*Bytes*的块大小.file.read() - 函数的参数只是指定大小,即要读取的字节数.codeape选择了'8192 Byte = 8 kB`(实际上它是'KiB`,但这并不常见).该值是"完全"随机的,但8 kB似乎是一个合适的值:没有太多的内存被浪费,并且仍然没有像Skurmedel接受的答案那样"太多"的读取操作...... (3认同)
  • 文件系统已经缓冲了数据块,因此这段代码是多余的.最好一次读取一个字节. (2认同)
  • @stack:你说这种冗余这样做的说法在实际的时间测试中看起来并不正确我已经将这种方法与Skurmedel的答案进行了比较. (2认同)
  • 这比我接受的答案慢.我不知道为什么. (2认同)
  • 嗯,似乎不太可能,链接? (2认同)

Vin*_*jip 50

如果文件不是太大,将其保存在内存中就是一个问题:

with open("filename", "rb") as f:
    bytes_read = f.read()
for b in bytes_read:
    process_byte(b)
Run Code Online (Sandbox Code Playgroud)

其中process_byte表示要对传入的字节执行的某些操作.

如果要一次处理一个块:

with open("filename", "rb") as f:
    bytes_read = f.read(CHUNKSIZE)
    while bytes_read:
        for b in bytes_read:
            process_byte(b)
        bytes_read = f.read(CHUNKSIZE)
Run Code Online (Sandbox Code Playgroud)

  • 您可能对我刚刚发布的[基准](/sf/answers/4130966451/)感兴趣。 (2认同)

jfs*_*jfs 34

要读取文件 - 一次一个字节(忽略缓冲) - 您可以使用双参数iter(callable, sentinel)内置函数:

with open(filename, 'rb') as file:
    for byte in iter(lambda: file.read(1), b''):
        # Do stuff with byte
Run Code Online (Sandbox Code Playgroud)

它调用file.read(1)直到它什么都不返回b''(空字节串).对于大文件,内存不会无限增长.您可以传递buffering=0open(),禁用缓冲 - 它保证每次迭代只读取一个字节(慢).

with-statement自动关闭文件 - 包括下面的代码引发异常的情况.

尽管默认情况下存在内部缓冲,但一次处理一个字节仍然是低效的.例如,这是blackhole.py实用程序,它会占用给定的所有内容:

#!/usr/bin/env python3
"""Discard all input. `cat > /dev/null` analog."""
import sys
from functools import partial
from collections import deque

chunksize = int(sys.argv[1]) if len(sys.argv) > 1 else (1 << 15)
deque(iter(partial(sys.stdin.detach().read, chunksize), b''), maxlen=0)
Run Code Online (Sandbox Code Playgroud)

例:

$ dd if=/dev/zero bs=1M count=1000 | python3 blackhole.py
Run Code Online (Sandbox Code Playgroud)

它处理〜1.5 GB/s的时候chunksize == 32768我的机器,只有在〜7.5 MB/s的时候chunksize == 1.也就是说,一次读取一个字节要慢200倍.如果您可以重写处理以一次使用多个字节并且需要性能,请将其考虑在内.

mmap允许您同时将文件视为bytearray文件对象.如果您需要访问两个接口,它可以作为将整个文件加载到内存中的替代方法.特别是,您可以使用plain for-loop 在内存映射文件上一次迭代一个字节:

from mmap import ACCESS_READ, mmap

with open(filename, 'rb', 0) as f, mmap(f.fileno(), 0, access=ACCESS_READ) as s:
    for byte in s: # length is equal to the current file size
        # Do stuff with byte
Run Code Online (Sandbox Code Playgroud)

mmap支持切片表示法.例如,从位置开始的文件mm[i:i+len]返回len字节i.Python 3.2之前不支持上下文管理器协议; mm.close()在这种情况下你需要明确调用.使用比每个字节mmap消耗更多的内存来迭代每个字节file.read(1),但mmap速度要快一个数量级.

  • @martineau 有 `numpy.memmap()`,您可以一次获取一个字节的数据 (ctypes.data)。您可以将 numpy 数组视为内存 + 元数据中的 blob。 (2认同)

Hol*_*lle 19

总结一下chrispy,Skurmedel,Ben Hoyt和Peter Hansen的所有优点,这将是一次一个字节处理二进制文件的最佳解决方案:

with open("myfile", "rb") as f:
    while True:
        byte = f.read(1)
        if not byte:
            break
        do_stuff_with(ord(byte))
Run Code Online (Sandbox Code Playgroud)

对于Python 2.6及更高版本,因为:

  • 内部的python缓冲区 - 无需读取块
  • 干燥原理 - 不要重复读取线
  • with语句确保关闭文件
  • 当没有更多字节时(不是字节为零时),'byte'的计算结果为false

或者使用JF Sebastians解决方案来提高速度

from functools import partial

with open(filename, 'rb') as file:
    for byte in iter(partial(file.read, 1), b''):
        # Do stuff with byte
Run Code Online (Sandbox Code Playgroud)

或者如果你想将它作为代码表示的生成器函数:

def bytes_from_file(filename):
    with open(filename, "rb") as f:
        while True:
            byte = f.read(1)
            if not byte:
                break
            yield(ord(byte))

# example:
for b in bytes_from_file('filename'):
    do_stuff_with(b)
Run Code Online (Sandbox Code Playgroud)

  • 正如链接的答案所说,即使读取被缓冲,Python中一次读取/处理一个字节的速度仍然很慢.如果可以像链接答案中的示例中那样一次处理几个字节,则可以大大提高性能:1.5GB/s与7.5MB/s. (2认同)

Aar*_*all 18

在Python中读取二进制文件并在每个字节上循环

Python 3.5中的新功能是pathlib模块,它具有专门用于读取文件作为字节的便捷方法,允许我们迭代字节.我认为这是一个体面的(如果快速和肮脏)答案:

import pathlib

for byte in pathlib.Path(path).read_bytes():
    print(byte)
Run Code Online (Sandbox Code Playgroud)

有趣的是,这是唯一的答案pathlib.

在Python 2中,你可能会这样做(正如Vinay Sajip也建议的那样):

with open(path, 'b') as file:
    for byte in file.read():
        print(byte)
Run Code Online (Sandbox Code Playgroud)

如果文件可能太大而无法在内存中进行迭代,那么您可以使用iter带有callable, sentinel签名的函数(Python 2版本)以惯用方式对其进行块化:

with open(path, 'b') as file:
    callable = lambda: file.read(1024)
    sentinel = bytes() # or b''
    for chunk in iter(callable, sentinel): 
        for byte in chunk:
            print(byte)
Run Code Online (Sandbox Code Playgroud)

(其他几个答案提到了这一点,但很少有人提供合理的读取大小.)

大文件或缓冲/交互式阅读的最佳实践

让我们创建一个执行此操作的函数,包括Python 3.5+标准库的惯用用法:

from pathlib import Path
from functools import partial
from io import DEFAULT_BUFFER_SIZE

def file_byte_iterator(path):
    """given a path, return an iterator over the file
    that lazily loads the file
    """
    path = Path(path)
    with path.open('rb') as file:
        reader = partial(file.read1, DEFAULT_BUFFER_SIZE)
        file_iterator = iter(reader, bytes())
        for chunk in file_iterator:
            yield from chunk
Run Code Online (Sandbox Code Playgroud)

请注意,我们使用file.read1.file.read阻止它获取它所请求的所有字节或EOF.file.read1允许我们避免阻塞,因此可以更快地返回.没有其他答案也提到这一点.

演示最佳实践用法:

让我们创建一个具有兆字节(实际上是mebibyte)的伪随机数据的文件:

import random
import pathlib
path = 'pseudorandom_bytes'
pathobj = pathlib.Path(path)

pathobj.write_bytes(
  bytes(random.randint(0, 255) for _ in range(2**20)))
Run Code Online (Sandbox Code Playgroud)

现在让我们迭代它并在内存中实现它:

>>> l = list(file_byte_iterator(path))
>>> len(l)
1048576
Run Code Online (Sandbox Code Playgroud)

我们可以检查数据的任何部分,例如,最后100个字节和前100个字节:

>>> l[-100:]
[208, 5, 156, 186, 58, 107, 24, 12, 75, 15, 1, 252, 216, 183, 235, 6, 136, 50, 222, 218, 7, 65, 234, 129, 240, 195, 165, 215, 245, 201, 222, 95, 87, 71, 232, 235, 36, 224, 190, 185, 12, 40, 131, 54, 79, 93, 210, 6, 154, 184, 82, 222, 80, 141, 117, 110, 254, 82, 29, 166, 91, 42, 232, 72, 231, 235, 33, 180, 238, 29, 61, 250, 38, 86, 120, 38, 49, 141, 17, 190, 191, 107, 95, 223, 222, 162, 116, 153, 232, 85, 100, 97, 41, 61, 219, 233, 237, 55, 246, 181]
>>> l[:100]
[28, 172, 79, 126, 36, 99, 103, 191, 146, 225, 24, 48, 113, 187, 48, 185, 31, 142, 216, 187, 27, 146, 215, 61, 111, 218, 171, 4, 160, 250, 110, 51, 128, 106, 3, 10, 116, 123, 128, 31, 73, 152, 58, 49, 184, 223, 17, 176, 166, 195, 6, 35, 206, 206, 39, 231, 89, 249, 21, 112, 168, 4, 88, 169, 215, 132, 255, 168, 129, 127, 60, 252, 244, 160, 80, 155, 246, 147, 234, 227, 157, 137, 101, 84, 115, 103, 77, 44, 84, 134, 140, 77, 224, 176, 242, 254, 171, 115, 193, 29]
Run Code Online (Sandbox Code Playgroud)

不要按行迭代二进制文件

不要执行以下操作 - 这会拉出任意大小的块直到它到达换行符 - 当块太小时太慢,并且可能太大:

    with open(path, 'rb') as file:
        for chunk in file: # text newline iteration - not for bytes
            yield from chunk
Run Code Online (Sandbox Code Playgroud)

以上只适用于语义上人类可读的文本文件(如纯文本,代码,标记,降价等...基本上任何ascii,utf,latin等编码).

  • 这样好多了……谢谢您这样做。我知道返回两年的答案并不总是很有趣,但是我很感谢您做到了。我特别喜欢“不要逐行迭代”副标题:-) (2认同)
  • @JoshuaYonathan 我使用 `Path` 对象,因为它是处理路径的一种非常方便的新方法。我们可以简单地调用路径对象上的方法,而不是将字符串传递到精心选择的“正确”函数中,该对象本质上包含您想要的语义上路径字符串的大部分重要功能。有了可以检查的 IDE,我们也可以更轻松地获得自动完成功能。我们可以使用内置的“open”完成相同的任务,但是在为程序员编写程序时使用“Path”对象代替有很多优点。 (2认同)

mar*_*eau 10

这篇文章本身并不是对问题的直接回答。相反,它是一个数据驱动的可扩展基准测试,可用于比较已发布到此问题的许多答案(以及利用在后来的、更现代的 Python 版本中添加的新功能的变体)——因此应该有助于确定哪个具有最佳性能。

在少数情况下,我修改了参考答案中的代码,使其与基准框架兼容。

首先,以下是当前最新版本的 Python 2 和 3 的结果:

Fastest to slowest execution speeds with 32-bit Python 2.7.16
  numpy version 1.16.5
  Test file size: 1,024 KiB
  100 executions, best of 3 repetitions

1                  Tcll (array.array) :   3.8943 secs, rel speed   1.00x,   0.00% slower (262.95 KiB/sec)
2  Vinay Sajip (read all into memory) :   4.1164 secs, rel speed   1.06x,   5.71% slower (248.76 KiB/sec)
3            codeape + iter + partial :   4.1616 secs, rel speed   1.07x,   6.87% slower (246.06 KiB/sec)
4                             codeape :   4.1889 secs, rel speed   1.08x,   7.57% slower (244.46 KiB/sec)
5               Vinay Sajip (chunked) :   4.1977 secs, rel speed   1.08x,   7.79% slower (243.94 KiB/sec)
6           Aaron Hall (Py 2 version) :   4.2417 secs, rel speed   1.09x,   8.92% slower (241.41 KiB/sec)
7                     gerrit (struct) :   4.2561 secs, rel speed   1.09x,   9.29% slower (240.59 KiB/sec)
8                     Rick M. (numpy) :   8.1398 secs, rel speed   2.09x, 109.02% slower (125.80 KiB/sec)
9                           Skurmedel :  31.3264 secs, rel speed   8.04x, 704.42% slower ( 32.69 KiB/sec)

Benchmark runtime (min:sec) - 03:26
Run Code Online (Sandbox Code Playgroud)
Fastest to slowest execution speeds with 32-bit Python 3.8.0
  numpy version 1.17.4
  Test file size: 1,024 KiB
  100 executions, best of 3 repetitions

1  Vinay Sajip + "yield from" + "walrus operator" :   3.5235 secs, rel speed   1.00x,   0.00% slower (290.62 KiB/sec)
2                       Aaron Hall + "yield from" :   3.5284 secs, rel speed   1.00x,   0.14% slower (290.22 KiB/sec)
3         codeape + iter + partial + "yield from" :   3.5303 secs, rel speed   1.00x,   0.19% slower (290.06 KiB/sec)
4                      Vinay Sajip + "yield from" :   3.5312 secs, rel speed   1.00x,   0.22% slower (289.99 KiB/sec)
5      codeape + "yield from" + "walrus operator" :   3.5370 secs, rel speed   1.00x,   0.38% slower (289.51 KiB/sec)
6                          codeape + "yield from" :   3.5390 secs, rel speed   1.00x,   0.44% slower (289.35 KiB/sec)
7                                      jfs (mmap) :   4.0612 secs, rel speed   1.15x,  15.26% slower (252.14 KiB/sec)
8              Vinay Sajip (read all into memory) :   4.5948 secs, rel speed   1.30x,  30.40% slower (222.86 KiB/sec)
9                        codeape + iter + partial :   4.5994 secs, rel speed   1.31x,  30.54% slower (222.64 KiB/sec)
10                                        codeape :   4.5995 secs, rel speed   1.31x,  30.54% slower (222.63 KiB/sec)
11                          Vinay Sajip (chunked) :   4.6110 secs, rel speed   1.31x,  30.87% slower (222.08 KiB/sec)
12                      Aaron Hall (Py 2 version) :   4.6292 secs, rel speed   1.31x,  31.38% slower (221.20 KiB/sec)
13                             Tcll (array.array) :   4.8627 secs, rel speed   1.38x,  38.01% slower (210.58 KiB/sec)
14                                gerrit (struct) :   5.0816 secs, rel speed   1.44x,  44.22% slower (201.51 KiB/sec)
15                 Rick M. (numpy) + "yield from" :  11.8084 secs, rel speed   3.35x, 235.13% slower ( 86.72 KiB/sec)
16                                      Skurmedel :  11.8806 secs, rel speed   3.37x, 237.18% slower ( 86.19 KiB/sec)
17                                Rick M. (numpy) :  13.3860 secs, rel speed   3.80x, 279.91% slower ( 76.50 KiB/sec)

Benchmark runtime (min:sec) - 04:47
Run Code Online (Sandbox Code Playgroud)

我还使用了一个更大的 10 MiB 测试文件(运行了将近一个小时)来运行它,并获得了与上面显示的结果相当的性能结果。

这是用于进行基准测试的代码:

from __future__ import print_function
import array
import atexit
from collections import deque, namedtuple
import io
from mmap import ACCESS_READ, mmap
import numpy as np
from operator import attrgetter
import os
import random
import struct
import sys
import tempfile
from textwrap import dedent
import time
import timeit
import traceback

try:
    xrange
except NameError:  # Python 3
    xrange = range


class KiB(int):
    """ KibiBytes - multiples of the byte units for quantities of information. """
    def __new__(self, value=0):
        return 1024*value


BIG_TEST_FILE = 1  # MiBs or 0 for a small file.
SML_TEST_FILE = KiB(64)
EXECUTIONS = 100  # Number of times each "algorithm" is executed per timing run.
TIMINGS = 3  # Number of timing runs.
CHUNK_SIZE = KiB(8)
if BIG_TEST_FILE:
    FILE_SIZE = KiB(1024) * BIG_TEST_FILE
else:
    FILE_SIZE = SML_TEST_FILE  # For quicker testing.

# Common setup for all algorithms -- prefixed to each algorithm's setup.
COMMON_SETUP = dedent("""
    # Make accessible in algorithms.
    from __main__ import array, deque, get_buffer_size, mmap, np, struct
    from __main__ import ACCESS_READ, CHUNK_SIZE, FILE_SIZE, TEMP_FILENAME
    from functools import partial
    try:
        xrange
    except NameError:  # Python 3
        xrange = range
""")


def get_buffer_size(path):
    """ Determine optimal buffer size for reading files. """
    st = os.stat(path)
    try:
        bufsize = st.st_blksize # Available on some Unix systems (like Linux)
    except AttributeError:
        bufsize = io.DEFAULT_BUFFER_SIZE
    return bufsize

# Utility primarily for use when embedding additional algorithms into benchmark.
VERIFY_NUM_READ = """
    # Verify generator reads correct number of bytes (assumes values are correct).
    bytes_read = sum(1 for _ in file_byte_iterator(TEMP_FILENAME))
    assert bytes_read == FILE_SIZE, \
           'Wrong number of bytes generated: got {:,} instead of {:,}'.format(
                bytes_read, FILE_SIZE)
"""

TIMING = namedtuple('TIMING', 'label, exec_time')

class Algorithm(namedtuple('CodeFragments', 'setup, test')):

    # Default timeit "stmt" code fragment.
    _TEST = """
        #for b in file_byte_iterator(TEMP_FILENAME):  # Loop over every byte.
        #    pass  # Do stuff with byte...
        deque(file_byte_iterator(TEMP_FILENAME), maxlen=0)  # Data sink.
    """

    # Must overload __new__ because (named)tuples are immutable.
    def __new__(cls, setup, test=None):
        """ Dedent (unindent) code fragment string arguments.
        Args:
          `setup` -- Code fragment that defines things used by `test` code.
                     In this case it should define a generator function named
                     `file_byte_iterator()` that will be passed that name of a test file
                     of binary data. This code is not timed.
          `test` -- Code fragment that uses things defined in `setup` code.
                    Defaults to _TEST. This is the code that's timed.
        """
        test =  cls._TEST if test is None else test  # Use default unless one is provided.

        # Uncomment to replace all performance tests with one that verifies the correct
        # number of bytes values are being generated by the file_byte_iterator function.
        #test = VERIFY_NUM_READ

        return tuple.__new__(cls, (dedent(setup), dedent(test)))


algorithms = {

    'Aaron Hall (Py 2 version)': Algorithm("""
        def file_byte_iterator(path):
            with open(path, "rb") as file:
                callable = partial(file.read, 1024)
                sentinel = bytes() # or b''
                for chunk in iter(callable, sentinel):
                    for byte in chunk:
                        yield byte
    """),

    "codeape": Algorithm("""
        def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
            with open(filename, "rb") as f:
                while True:
                    chunk = f.read(chunksize)
                    if chunk:
                        for b in chunk:
                            yield b
                    else:
                        break
    """),

    "codeape + iter + partial": Algorithm("""
        def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
            with open(filename, "rb") as f:
                for chunk in iter(partial(f.read, chunksize), b''):
                    for b in chunk:
                        yield b
    """),

    "gerrit (struct)": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                fmt = '{}B'.format(FILE_SIZE)  # Reads entire file at once.
                for b in struct.unpack(fmt, f.read()):
                    yield b
    """),

    'Rick M. (numpy)': Algorithm("""
        def file_byte_iterator(filename):
            for byte in np.fromfile(filename, 'u1'):
                yield byte
    """),

    "Skurmedel": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                byte = f.read(1)
                while byte:
                    yield byte
                    byte = f.read(1)
    """),

    "Tcll (array.array)": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                arr = array.array('B')
                arr.fromfile(f, FILE_SIZE)  # Reads entire file at once.
                for b in arr:
                    yield b
    """),

    "Vinay Sajip (read all into memory)": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                bytes_read = f.read()  # Reads entire file at once.
            for b in bytes_read:
                yield b
    """),

    "Vinay Sajip (chunked)": Algorithm("""
        def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
            with open(filename, "rb") as f:
                chunk = f.read(chunksize)
                while chunk:
                    for b in chunk:
                        yield b
                    chunk = f.read(chunksize)
    """),

}  # End algorithms

#
# Versions of algorithms that will only work in certain releases (or better) of Python.
#
if sys.version_info >= (3, 3):
    algorithms.update({

        'codeape + iter + partial + "yield from"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    for chunk in iter(partial(f.read, chunksize), b''):
                        yield from chunk
        """),

        'codeape + "yield from"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    while True:
                        chunk = f.read(chunksize)
                        if chunk:
                            yield from chunk
                        else:
                            break
        """),

        "jfs (mmap)": Algorithm("""
            def file_byte_iterator(filename):
                with open(filename, "rb") as f, \
                     mmap(f.fileno(), 0, access=ACCESS_READ) as s:
                    yield from s
        """),

        'Rick M. (numpy) + "yield from"': Algorithm("""
            def file_byte_iterator(filename):
            #    data = np.fromfile(filename, 'u1')
                yield from np.fromfile(filename, 'u1')
        """),

        'Vinay Sajip + "yield from"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    chunk = f.read(chunksize)
                    while chunk:
                        yield from chunk  # Added in Py 3.3
                        chunk = f.read(chunksize)
        """),

    })  # End Python 3.3 update.

if sys.version_info >= (3, 5):
    algorithms.update({

        'Aaron Hall + "yield from"': Algorithm("""
            from pathlib import Path

            def file_byte_iterator(path):
                ''' Given a path, return an iterator over the file
                    that lazily loads the file.
                '''
                path = Path(path)
                bufsize = get_buffer_size(path)

                with path.open('rb') as file:
                    reader = partial(file.read1, bufsize)
                    for chunk in iter(reader, bytes()):
                        yield from chunk
        """),

    })  # End Python 3.5 update.

if sys.version_info >= (3, 8, 0):
    algorithms.update({

        'Vinay Sajip + "yield from" + "walrus operator"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    while chunk := f.read(chunksize):
                        yield from chunk  # Added in Py 3.3
        """),

        'codeape + "yield from" + "walrus operator"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    while chunk := f.read(chunksize):
                        yield from chunk
        """),

    })  # End Python 3.8.0 update.update.


#### Main ####

def main():
    global TEMP_FILENAME

    def cleanup():
        """ Clean up after testing is completed. """
        try:
            os.remove(TEMP_FILENAME)  # Delete the temporary file.
        except Exception:
            pass

    atexit.register(cleanup)

    # Create a named temporary binary file of pseudo-random bytes for testing.
    fd, TEMP_FILENAME = tempfile.mkstemp('.bin')
    with os.fdopen(fd, 'wb') as file:
         os.write(fd, bytearray(random.randrange(256) for _ in range(FILE_SIZE)))

    # Execute and time each algorithm, gather results.
    start_time = time.time()  # To determine how long testing itself takes.

    timings = []
    for label in algorithms:
        try:
            timing = TIMING(label,
                            min(timeit.repeat(algorithms[label].test,
                                              setup=COMMON_SETUP + algorithms[label].setup,
                                              repeat=TIMINGS, number=EXECUTIONS)))
        except Exception as exc:
            print('{} occurred timing the algorithm: "{}"\n  {}'.format(
                    type(exc).__name__, label, exc))
            traceback.print_exc(file=sys.stdout)  # Redirect to stdout.
            sys.exit(1)
        timings.append(timing)

    # Report results.
    print('Fastest to slowest execution speeds with {}-bit Python {}.{}.{}'.format(
            64 if sys.maxsize > 2**32 else 32, *sys.version_info[:3]))
    print('  numpy version {}'.format(np.version.full_version))
    print('  Test file size: {:,} KiB'.format(FILE_SIZE // KiB(1)))
    print('  {:,d} executions, best of {:d} repetitions'.format(EXECUTIONS, TIMINGS))
    print()

    longest = max(len(timing.label) for timing in timings)  # Len of longest identifier.
    ranked = sorted(timings, key=attrgetter('exec_time')) # Sort so fastest is first.
    fastest = ranked[0].exec_time
    for rank, timing in enumerate(ranked, 1):
        print('{:<2d} {:>{width}} : {:8.4f} secs, rel speed {:6.2f}x, {:6.2f}% slower '
              '({:6.2f} KiB/sec)'.format(
                    rank,
                    timing.label, timing.exec_time, round(timing.exec_time/fastest, 2),
                    round((timing.exec_time/fastest - 1) * 100, 2),
                    (FILE_SIZE/timing.exec_time) / KiB(1),  # per sec.
                    width=longest))
    print()
    mins, secs = divmod(time.time()-start_time, 60)
    print('Benchmark runtime (min:sec) - {:02d}:{:02d}'.format(int(mins),
                                                               int(round(secs))))

main()
Run Code Online (Sandbox Code Playgroud)


小智 6

Python 3,一次读取所有文件:

with open("filename", "rb") as binary_file:
    # Read the whole file at once
    data = binary_file.read()
    print(data)
Run Code Online (Sandbox Code Playgroud)

您可以使用data变量迭代任何对象。


Ric*_* M. 6

在尝试了上述所有方法并使用@Aaron Hall的答案后,在运行Window 10、8 Gb RAM和32位Python 3.5的计算机上,我收到了约90 Mb文件的内存错误。一位同事推荐我使用numpy它代替它,它产生了奇迹。

到目前为止,读取整个二进制文件(我已经测试过)的最快方法是:

import numpy as np

file = "binary_file.bin"
data = np.fromfile(file, 'u1')
Run Code Online (Sandbox Code Playgroud)

参考

到目前为止,速度比任何其他方法都要快。希望它能对某人有所帮助!

  • 很好,但是不能用于包含不同数据类型的二进制文件。 (3认同)