解决问题最终检查我的解决方案在底部
最近我试图在Mahout in Action的chaper6(列出6.1~6.4)中运行推荐示例.但我遇到了一个问题,我已经google了一下,但我找不到解决方案.
这是问题所在:我有一对mapper-reducer
public final class WikipediaToItemPrefsMapper extends
Mapper<LongWritable, Text, VarLongWritable, VarLongWritable> {
private static final Pattern NUMBERS = Pattern.compile("(\\d+)");
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
Matcher m = NUMBERS.matcher(line);
m.find();
VarLongWritable userID = new VarLongWritable(Long.parseLong(m.group()));
VarLongWritable itemID = new VarLongWritable();
while (m.find()) {
itemID.set(Long.parseLong(m.group()));
context.write(userID, itemID);
}
}
}
public class WikipediaToUserVectorReducer
extends
Reducer<VarLongWritable, VarLongWritable, VarLongWritable, VectorWritable> {
public void reduce(VarLongWritable userID,
Iterable<VarLongWritable> itemPrefs, Context context)
throws IOException, InterruptedException {
Vector userVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
for (VarLongWritable itemPref : itemPrefs) {
userVector.set((int) itemPref.get(), 1.0f);
}
context.write(userID, new VectorWritable(userVector));
}
}
Run Code Online (Sandbox Code Playgroud)
减速器输出一个用户ID和一个userVector和它看起来像这样:98955 {590:1.0 22:1.0 9059 1.0 3:1.0 2:1.0 1:1.0}
然后我想使用另一对mapper-reducer来处理这些数据
public class UserVectorSplitterMapper
extends
Mapper<VarLongWritable, VectorWritable, IntWritable, VectorOrPrefWritable> {
public void map(VarLongWritable key, VectorWritable value, Context context)
throws IOException, InterruptedException {
long userID = key.get();
Vector userVector = value.get();
Iterator<Vector.Element> it = userVector.iterateNonZero();
IntWritable itemIndexWritable = new IntWritable();
while (it.hasNext()) {
Vector.Element e = it.next();
int itemIndex = e.index();
float preferenceValue = (float) e.get();
itemIndexWritable.set(itemIndex);
context.write(itemIndexWritable,
new VectorOrPrefWritable(userID, preferenceValue));
}
}
}
Run Code Online (Sandbox Code Playgroud)
当我尝试运行这个工作时,它会抛出错误说
org.apache.hadoop.io.Text无法强制转换为org.apache.mahout.math.VectorWritable
第一映射器,减速器输出写入到HDFS,并且所述第二映射器,减速器尝试读取输出,映射器可以施放到98955 VarLongWritable,但不能将{590:1.0 22:1.0 9059 1.0 3: 1.0 2:1.0 1:1.0}到VectorWritable,所以我想知道有没有办法让第一个mapper-reducer直接将输出发送到第二对,那么就没有必要进行数据转换.我已经查看了Hadoop的行动,并且hadoop:权威的指南,似乎没有这样的方法可以做到这一点,任何建议?
解决方案:通过使用SequenceFileOutputFormat,我们可以输出并保存减少对DFS第一MapReduce的工作流程的结果,那么第二MapReduce的工作流程可以通过读取临时文件作为输入SequenceFileInputFormat创建映射时,类作为参数.由于矢量将保存在具有特定格式的二进制序列文件中,因此SequenceFileInputFormat可以读取它并将其转换回矢量格式.
以下是一些示例代码:
confFactory ToItemPrefsWorkFlow = new confFactory
(new Path("/dbout"), //input file path
new Path("/mahout/output.txt"), //output file path
TextInputFormat.class, //input format
VarLongWritable.class, //mapper key format
Item_Score_Writable.class, //mapper value format
VarLongWritable.class, //reducer key format
VectorWritable.class, //reducer value format
**SequenceFileOutputFormat.class** //The reducer output format
);
ToItemPrefsWorkFlow.setMapper( WikipediaToItemPrefsMapper.class);
ToItemPrefsWorkFlow.setReducer(WikipediaToUserVectorReducer.class);
JobConf conf1 = ToItemPrefsWorkFlow.getConf();
confFactory UserVectorToCooccurrenceWorkFlow = new confFactory
(new Path("/mahout/output.txt"),
new Path("/mahout/UserVectorToCooccurrence"),
SequenceFileInputFormat.class, //notice that the input format of mapper of the second work flow is now SequenceFileInputFormat.class
//UserVectorToCooccurrenceMapper.class,
IntWritable.class,
IntWritable.class,
IntWritable.class,
VectorWritable.class,
SequenceFileOutputFormat.class
);
UserVectorToCooccurrenceWorkFlow.setMapper(UserVectorToCooccurrenceMapper.class);
UserVectorToCooccurrenceWorkFlow.setReducer(UserVectorToCooccurrenceReducer.class);
JobConf conf2 = UserVectorToCooccurrenceWorkFlow.getConf();
JobClient.runJob(conf1);
JobClient.runJob(conf2);
Run Code Online (Sandbox Code Playgroud)
如果您有任何问题,请随时与我联系
您需要显式配置第一个作业的输出以使用 SequenceFileOutputFormat 并定义输出键和值类:
job.setOutputFormat(SequenceFileOutputFormat.class);
job.setOutputKeyClass(VarLongWritable.class);
job.setOutputKeyClass(VectorWritable.class);
Run Code Online (Sandbox Code Playgroud)
如果没有看到您的驱动程序代码,我猜您正在使用 TextOutputFormat 作为第一个作业的输出,并使用 TextInputFormat 作为第二个作业的输入 - 并且此输入格式将成对发送到<Text, Text>
第二个映射器