14 algorithm math big-o primes
给定大N,我需要遍历所有phi(k),使得1 <k <N很快.由于N的值约为10 12,因此重要的是存储器复杂度为sub O(n).
可能吗?如果是这样,怎么样?
RBa*_*ung 21
这可以通过内存复杂度O(Sqrt(N))和CPU复杂度O(N*Log(Log(N)))和优化的窗口化Eratosthenes筛来完成,如下面的代码示例所示.
由于没有指定语言,因为我不知道Python,我已经在VB.net中实现了它,但是如果你需要的话我可以将它转换为C#.
Imports System.Math
Public Class TotientSerialCalculator
'Implements an extremely efficient Serial Totient(phi) calculator '
' This implements an optimized windowed Sieve of Eratosthenes. The'
' window size is set at Sqrt(N) both to optimize collecting and '
' applying all of the Primes below Sqrt(N), and to minimize '
' window-turning overhead. '
' '
' CPU complexity is O( N * Log(Log(N)) ), which is virtually linear.'
' '
' MEM Complexity is O( Sqrt(N) ). '
' '
' This is probalby the ideal combination, as any attempt to further '
'reduce memory will almost certainly result in disproportionate increases'
'in CPU complexity, and vice-versa. '
Structure NumberFactors
Dim UnFactored As Long 'the part of the number that still needs to be factored'
Dim Phi As Long 'the totient value progressively calculated'
' (equals total numbers less than N that are CoPrime to N)'
'MEM = 8 bytes each'
End Structure
Private ReportInterval As Long
Private PrevLast As Long 'the last value in the previous window'
Private FirstValue As Long 'the first value in this windows range'
Private WindowSize As Long
Private LastValue As Long 'the last value in this windows range'
Private NextFirst As Long 'the first value in the next window'
'Array that stores all of the NumberFactors in the current window.'
' this is the primary memory consumption for the class and it'
' is 16 * Sqrt(N) Bytes, which is O(Sqrt(N)).'
Public Numbers() As NumberFactors
' For N=10^12 (1 trilion), this will be 16MB, which should be bearable anywhere.'
'(note that the Primes() array is a secondary memory consumer'
' at O(pi(Sqrt(N)), which will be within 10x of O(Sqrt(N)))'
Public Event EmitTotientPair(ByVal k As Long, ByVal Phi As Long)
'===== The Routine To Call: ========================'
Public Sub EmitTotientPairsToN(ByVal N As Long)
'Routine to Emit Totient pairs {k, Phi(k)} for k = 1 to N'
' 2009-07-14, RBarryYoung, Created.'
Dim i As Long
Dim k As Long 'the current number being factored'
Dim p As Long 'the current prime factor'
'Establish the Window frame:'
' note: WindowSize is the critical value that controls both memory'
' usage and CPU consumption and must be SQRT(N) for it to work optimally.'
WindowSize = Ceiling(Sqrt(CDbl(N)))
ReDim Numbers(0 To WindowSize - 1)
'Initialize the first window:'
MapWindow(1)
Dim IsFirstWindow As Boolean = True
'adjust this to control how often results are show'
ReportInterval = N / 100
'Allocate the primes array to hold the primes list:'
' Only primes <= SQRT(N) are needed for factoring'
' PiMax(X) is a Max estimate of the number of primes <= X'
Dim Primes() As Long, PrimeIndex As Long, NextPrime As Long
'init the primes list and its pointers'
ReDim Primes(0 To PiMax(WindowSize) - 1)
Primes(0) = 2 '"prime" the primes list with the first prime'
NextPrime = 1
'Map (and Remap) the window with Sqrt(N) numbers, Sqrt(N) times to'
' sequentially map all of the numbers <= N.'
Do
'Sieve the primes across the current window'
PrimeIndex = 0
'note: cant use enumerator for the loop below because NextPrime'
' changes during the first window as new primes <= SQRT(N) are accumulated'
Do While PrimeIndex < NextPrime
'get the next prime in the list'
p = Primes(PrimeIndex)
'find the first multiple of (p) in the current window range'
k = PrevLast + p - (PrevLast Mod p)
Do
With Numbers(k - FirstValue)
.UnFactored = .UnFactored \ p 'always works the first time'
.Phi = .Phi * (p - 1) 'Phi = PRODUCT( (Pi-1)*Pi^(Ei-1) )'
'The loop test that follows is probably the central CPU overhead'
' I believe that it is O(N*Log(Log(N)), which is virtually O(N)'
' ( for instance at N = 10^12, Log(Log(N)) = 3.3 )'
Do While (.UnFactored Mod p) = 0
.UnFactored = .UnFactored \ p
.Phi = .Phi * p
Loop
End With
'skip ahead to the next multiple of p: '
'(this is what makes it so fast, never have to try prime factors that dont apply)'
k += p
'repeat until we step out of the current window:'
Loop While k < NextFirst
'if this is the first window, then scan ahead for primes'
If IsFirstWindow Then
For i = Primes(NextPrime - 1) + 1 To p ^ 2 - 1 'the range of possible new primes'
'Dont go beyond the first window'
If i >= WindowSize Then Exit For
If Numbers(i - FirstValue).UnFactored = i Then
'this is a prime less than SQRT(N), so add it to the list.'
Primes(NextPrime) = i
NextPrime += 1
End If
Next
End If
PrimeIndex += 1 'move to the next prime'
Loop
'Now Finish & Emit each one'
For k = FirstValue To LastValue
With Numbers(k - FirstValue)
'Primes larger than Sqrt(N) will not be finished: '
If .UnFactored > 1 Then
'Not done factoring, must be an large prime factor remaining: '
.Phi = .Phi * (.UnFactored - 1)
.UnFactored = 1
End If
'Emit the value pair: (k, Phi(k)) '
EmitPhi(k, .Phi)
End With
Next
're-Map to the next window '
IsFirstWindow = False
MapWindow(NextFirst)
Loop While FirstValue <= N
End Sub
Sub EmitPhi(ByVal k As Long, ByVal Phi As Long)
'just a placeholder for now, that raises an event to the display form'
' periodically for reporting purposes. Change this to do the actual'
' emitting.'
If (k Mod ReportInterval) = 0 Then
RaiseEvent EmitTotientPair(k, Phi)
End If
End Sub
Public Sub MapWindow(ByVal FirstVal As Long)
'Efficiently reset the window so that we do not have to re-allocate it.'
'init all of the boundary values'
FirstValue = FirstVal
PrevLast = FirstValue - 1
NextFirst = FirstValue + WindowSize
LastValue = NextFirst - 1
'Initialize the Numbers prime factor arrays'
Dim i As Long
For i = 0 To WindowSize - 1
With Numbers(i)
.UnFactored = i + FirstValue 'initially equal to the number itself'
.Phi = 1 'starts at mulplicative identity(1)'
End With
Next
End Sub
Function PiMax(ByVal x As Long) As Long
'estimate of pi(n) == {primes <= (n)} that is never less'
' than the actual number of primes. (from P. Dusart, 1999)'
Return (x / Log(x)) * (1.0 + 1.2762 / Log(x))
End Function
End Class
Run Code Online (Sandbox Code Playgroud)
注意,在O(N*Log(Log(N)))处,该例程将每个数字分解为O(Log(Log(N))),这比最快的单个N因子分解算法要快得多.一些回复在这里.事实上,在N = 10 ^ 12时,它快2400倍!
我已经在我的2Ghz Intel Core 2笔记本电脑上测试了这个例程,它每秒计算超过3,000,000个Phi()值.在此速度下,计算10 ^ 12值需要大约4天.我也测试了它的正确性高达100,000,000没有任何错误.它基于64位整数,因此任何高达2 ^ 63(10 ^ 19)的内容都应该是准确的(尽管对任何人来说都太慢).
我还有一个Visual Studio WinForm(也是VB.net)用于运行/测试它,如果你需要它我可以提供.
如果您有任何疑问,请告诉我.
根据评论中的要求,我在下面添加了一个C#版本的代码.但是,因为我目前处于其他一些项目的中间,我没有时间自己转换它,所以我使用了一个在线VB到C#转换站点(http://www.carlosag.net/tools/ codetranslator /).所以请注意,这是自动转换的,我还没有时间自己测试或检查.
using System.Math;
public class TotientSerialCalculator {
// Implements an extremely efficient Serial Totient(phi) calculator '
// This implements an optimized windowed Sieve of Eratosthenes. The'
// window size is set at Sqrt(N) both to optimize collecting and '
// applying all of the Primes below Sqrt(N), and to minimize '
// window-turning overhead. '
// '
// CPU complexity is O( N * Log(Log(N)) ), which is virtually linear.'
// '
// MEM Complexity is O( Sqrt(N) ). '
// '
// This is probalby the ideal combination, as any attempt to further '
// reduce memory will almost certainly result in disproportionate increases'
// in CPU complexity, and vice-versa. '
struct NumberFactors {
private long UnFactored; // the part of the number that still needs to be factored'
private long Phi;
}
private long ReportInterval;
private long PrevLast; // the last value in the previous window'
private long FirstValue; // the first value in this windows range'
private long WindowSize;
private long LastValue; // the last value in this windows range'
private long NextFirst; // the first value in the next window'
// Array that stores all of the NumberFactors in the current window.'
// this is the primary memory consumption for the class and it'
// is 16 * Sqrt(N) Bytes, which is O(Sqrt(N)).'
public NumberFactors[] Numbers;
// For N=10^12 (1 trilion), this will be 16MB, which should be bearable anywhere.'
// (note that the Primes() array is a secondary memory consumer'
// at O(pi(Sqrt(N)), which will be within 10x of O(Sqrt(N)))'
//NOTE: this part looks like it did not convert correctly
public event EventHandler EmitTotientPair;
private long k;
private long Phi;
// ===== The Routine To Call: ========================'
public void EmitTotientPairsToN(long N) {
// Routine to Emit Totient pairs {k, Phi(k)} for k = 1 to N'
// 2009-07-14, RBarryYoung, Created.'
long i;
long k;
// the current number being factored'
long p;
// the current prime factor'
// Establish the Window frame:'
// note: WindowSize is the critical value that controls both memory'
// usage and CPU consumption and must be SQRT(N) for it to work optimally.'
WindowSize = Ceiling(Sqrt(double.Parse(N)));
object Numbers;
this.MapWindow(1);
bool IsFirstWindow = true;
ReportInterval = (N / 100);
// Allocate the primes array to hold the primes list:'
// Only primes <= SQRT(N) are needed for factoring'
// PiMax(X) is a Max estimate of the number of primes <= X'
long[] Primes;
long PrimeIndex;
long NextPrime;
// init the primes list and its pointers'
object Primes;
-1;
Primes[0] = 2;
// "prime" the primes list with the first prime'
NextPrime = 1;
// Map (and Remap) the window with Sqrt(N) numbers, Sqrt(N) times to'
// sequentially map all of the numbers <= N.'
for (
; (FirstValue <= N);
) {
PrimeIndex = 0;
// note: cant use enumerator for the loop below because NextPrime'
// changes during the first window as new primes <= SQRT(N) are accumulated'
while ((PrimeIndex < NextPrime)) {
// get the next prime in the list'
p = Primes[PrimeIndex];
// find the first multiple of (p) in the current window range'
k = (PrevLast
+ (p
- (PrevLast % p)));
for (
; (k < NextFirst);
) {
// With...
UnFactored;
p;
// always works the first time'
(Phi
* (p - 1));
while (// TODO: Warning!!!! NULL EXPRESSION DETECTED...
) {
(UnFactored % p);
UnFactored;
(Phi * p);
}
// skip ahead to the next multiple of p: '
// (this is what makes it so fast, never have to try prime factors that dont apply)'
k = (k + p);
// repeat until we step out of the current window:'
}
// if this is the first window, then scan ahead for primes'
if (IsFirstWindow) {
for (i = (Primes[(NextPrime - 1)] + 1); (i
<= (p | (2 - 1))); i++) {
// the range of possible new primes'
// TODO: Warning!!! The operator should be an XOR ^ instead of an OR, but not available in CodeDOM
// Dont go beyond the first window'
if ((i >= WindowSize)) {
break;
}
if ((Numbers[(i - FirstValue)].UnFactored == i)) {
// this is a prime less than SQRT(N), so add it to the list.'
Primes[NextPrime] = i;
NextPrime++;
}
}
}
PrimeIndex++;
// move to the next prime'
}
// Now Finish & Emit each one'
for (k = FirstValue; (k <= LastValue); k++) {
// With...
// Primes larger than Sqrt(N) will not be finished: '
if ((Numbers[(k - FirstValue)].UnFactored > 1)) {
// Not done factoring, must be an large prime factor remaining: '
(Numbers[(k - FirstValue)].Phi * (Numbers[(k - FirstValue)].UnFactored - 1).UnFactored) = 1;
Numbers[(k - FirstValue)].Phi = 1;
}
// Emit the value pair: (k, Phi(k)) '
this.EmitPhi(k, Numbers[(k - FirstValue)].Phi);
}
// re-Map to the next window '
IsFirstWindow = false;
this.MapWindow(NextFirst);
}
}
void EmitPhi(long k, long Phi) {
// just a placeholder for now, that raises an event to the display form'
// periodically for reporting purposes. Change this to do the actual'
// emitting.'
if (((k % ReportInterval)
== 0)) {
EmitTotientPair(k, Phi);
}
}
public void MapWindow(long FirstVal) {
// Efficiently reset the window so that we do not have to re-allocate it.'
// init all of the boundary values'
FirstValue = FirstVal;
PrevLast = (FirstValue - 1);
NextFirst = (FirstValue + WindowSize);
LastValue = (NextFirst - 1);
// Initialize the Numbers prime factor arrays'
long i;
for (i = 0; (i
<= (WindowSize - 1)); i++) {
// With...
// initially equal to the number itself'
Phi = 1;
// starts at mulplicative identity(1)'
}
}
long PiMax(long x) {
// estimate of pi(n) == {primes <= (n)} that is never less'
// than the actual number of primes. (from P. Dusart, 1999)'
return ((x / Log(x)) * (1 + (1.2762 / Log(x))));
}
}
Run Code Online (Sandbox Code Playgroud)