Sol*_*une 6 python audio numpy fft audio-processing
所以我一直在使用FFT,我正在尝试从FFT文件中获取声音波形(最终修改它),然后将修改后的波形输出回文件.我已经获得了声波的FFT,然后在其上使用了逆FFT函数,但输出文件根本听不到.我没有对波形进行任何过滤 - 我只是测试获取频率数据然后将其放回文件中 - 听起来应该是相同的,但听起来差别很大.有任何想法吗?
- 编辑 -
从那以后我一直在研究这个项目,但还没有得到理想的结果.输出的声音文件是嘈杂的(两者都更大声,以及原始文件中不存在的额外噪声),并且来自一个声道的声音泄漏到另一个声道(之前是静音的).输入声音文件是立体声双声道文件,声音仅来自一个声道.这是我的代码:
import scipy
import wave
import struct
import numpy
import pylab
from scipy.io import wavfile
rate, data = wavfile.read('./TriLeftChannel.wav')
filtereddata = numpy.fft.rfft(data, axis=0)
print (data)
filteredwrite = numpy.fft.irfft(filtereddata, axis=0)
print (filteredwrite)
wavfile.write('TestFiltered.wav', rate, filteredwrite)
Run Code Online (Sandbox Code Playgroud)
我不太清楚为什么这不起作用......?
编辑:我已经压缩了问题.py文件和音频文件,如果这可以帮助解决这里的问题.
难道不应该更像这样吗?
filtereddata = numpy.fft.fft(data)
# do fft stuff to filtereddata
filteredwrite = numpy.fft.ifft(filtereddata)
wavfile.write('TestFiltered.wav', rate, filteredwrite)
Run Code Online (Sandbox Code Playgroud)
>>> import numpy as np
>>> a = np.vstack([np.ones(11), np.arange(11)])
# We have two channels along axis 0, the signals are along axis 1
>>> a
array([[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]])
>>> np.fft.irfft(np.fft.rfft(a, axis=1), axis=1)
array([[ 1.1 , 1.1 , 1.1 , 1.1 ,
1.1 , 1.1 , 1.1 , 1.1 ,
1.1 , 1.1 ],
[ 0.55 , 1.01836542, 2.51904294, 3.57565618,
4.86463721, 6.05 , 7.23536279, 8.52434382,
9.58095706, 11.08163458]])
# irfft returns an even number along axis=1, even though a was (2, 11)
# When a is even along axis 1, we get a back after the irfft.
>>> a = np.vstack([np.ones(10), np.arange(10)])
>>> np.fft.irfft(np.fft.rfft(a, axis=1), axis=1)
array([[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00,
1.00000000e+00, 1.00000000e+00, 1.00000000e+00,
1.00000000e+00, 1.00000000e+00, 1.00000000e+00,
1.00000000e+00],
[ 7.10542736e-16, 1.00000000e+00, 2.00000000e+00,
3.00000000e+00, 4.00000000e+00, 5.00000000e+00,
6.00000000e+00, 7.00000000e+00, 8.00000000e+00,
9.00000000e+00]])
# It seems like you signals are along axis 0, here is an example where the signals are on axis 0
>>> a = np.vstack([np.ones(10), np.arange(10)]).T
>>> a
array([[ 1., 0.],
[ 1., 1.],
[ 1., 2.],
[ 1., 3.],
[ 1., 4.],
[ 1., 5.],
[ 1., 6.],
[ 1., 7.],
[ 1., 8.],
[ 1., 9.]])
>>> np.fft.irfft(np.fft.rfft(a, axis=0), axis=0)
array([[ 1.00000000e+00, 7.10542736e-16],
[ 1.00000000e+00, 1.00000000e+00],
[ 1.00000000e+00, 2.00000000e+00],
[ 1.00000000e+00, 3.00000000e+00],
[ 1.00000000e+00, 4.00000000e+00],
[ 1.00000000e+00, 5.00000000e+00],
[ 1.00000000e+00, 6.00000000e+00],
[ 1.00000000e+00, 7.00000000e+00],
[ 1.00000000e+00, 8.00000000e+00],
[ 1.00000000e+00, 9.00000000e+00]])
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
9421 次 |
| 最近记录: |