如何将不等lm对象长度的列表组合到数据框中?

Ton*_*ony 4 regression r linear-regression plyr dataframe

我喜欢提取每个lm对象的系数和标准误差,并将它们组合成一个data.frame,并为缺失的预测变量填充NA.

    set.seed(12345)
    x<-matrix(rnorm(1000),nrow=100,ncol=10)
    colnames(x)<-paste("x",1:10,sep="")
    df<-data.frame(y=rnorm(100),x)
    m1<-vector('list', 10)
    for ( i in 2:11){
    eqn <- as.formula(paste("y ~", paste(colnames(df)[2:i], collapse='+')))
    m1[[i-1]] <- lm(eqn, df)
    }
Run Code Online (Sandbox Code Playgroud)

我们欢迎所有的建议!

Jos*_*ien 9

这应该做的伎俩:

cList <- lapply(m1, coef)
nms  <- names(cList[[11]])

cMat <- do.call(rbind, lapply(cList, function(X) X[nms]))
cDF  <- as.data.frame(cMat); names(cDF) <- nms   # Pretty up the results

cDF[1:5, 1:6]
#   (Intercept)        x1          x2         x3         x4       x5
# 1  -0.2345084 0.2027485          NA         NA         NA       NA
# 2  -0.2334043 0.2074812 -0.05006297         NA         NA       NA
# 3  -0.2299977 0.2099620 -0.03892985 0.09777829         NA       NA
# 4  -0.2095798 0.2221179 -0.02710201 0.06403695 -0.1184191       NA
# 5  -0.2060406 0.2180674 -0.01062671 0.06632922 -0.1045128 0.130937
Run Code Online (Sandbox Code Playgroud)

编辑:

要将标准错误收集到类似的结构中,只需执行以下操作:

seList <- lapply(m1, function(X)  coef(summary(X))[,2])
seMat <- do.call(rbind, lapply(cList, function(X) X[nms]))
seDF  <- as.data.frame(cMat); names(seDF) <- nms
Run Code Online (Sandbox Code Playgroud)