Ton*_*ony 4 regression r linear-regression plyr dataframe
我喜欢提取每个lm对象的系数和标准误差,并将它们组合成一个data.frame,并为缺失的预测变量填充NA.
set.seed(12345)
x<-matrix(rnorm(1000),nrow=100,ncol=10)
colnames(x)<-paste("x",1:10,sep="")
df<-data.frame(y=rnorm(100),x)
m1<-vector('list', 10)
for ( i in 2:11){
eqn <- as.formula(paste("y ~", paste(colnames(df)[2:i], collapse='+')))
m1[[i-1]] <- lm(eqn, df)
}
Run Code Online (Sandbox Code Playgroud)
我们欢迎所有的建议!
这应该做的伎俩:
cList <- lapply(m1, coef)
nms <- names(cList[[11]])
cMat <- do.call(rbind, lapply(cList, function(X) X[nms]))
cDF <- as.data.frame(cMat); names(cDF) <- nms # Pretty up the results
cDF[1:5, 1:6]
# (Intercept) x1 x2 x3 x4 x5
# 1 -0.2345084 0.2027485 NA NA NA NA
# 2 -0.2334043 0.2074812 -0.05006297 NA NA NA
# 3 -0.2299977 0.2099620 -0.03892985 0.09777829 NA NA
# 4 -0.2095798 0.2221179 -0.02710201 0.06403695 -0.1184191 NA
# 5 -0.2060406 0.2180674 -0.01062671 0.06632922 -0.1045128 0.130937
Run Code Online (Sandbox Code Playgroud)
编辑:
要将标准错误收集到类似的结构中,只需执行以下操作:
seList <- lapply(m1, function(X) coef(summary(X))[,2])
seMat <- do.call(rbind, lapply(cList, function(X) X[nms]))
seDF <- as.data.frame(cMat); names(seDF) <- nms
Run Code Online (Sandbox Code Playgroud)