我正在尝试为二进制数据创建带有分箱x轴的散点图.当我使用geom_point二进制y时,情节很无用(见图1).如图2所示,我想根据x轴的值对数据进行分类,然后使用geom_point(将每个bin中的obs数量映射到该点的大小)绘制每个bin中的avg x和avg y ).我可以通过聚合数据来做到这一点,但我想知道ggplot是否可以直接进行.我玩过stat_bindot等等,但无法找到解决方案.有任何想法吗?下面是一些代码.
谢谢!
# simulate data
n=1000
y=rbinom(n,1,0.5)
x=runif(n)
data=data.frame(x,y)
# figure 1 - geom_point with binary data, pretty useless!
ggplot(data,aes(x=x,y=y)) + geom_point() + ylim(0,1)
# let's create an aggregated dataset with bins
bin=cut(data$x,seq(0,1,0.05))
# I am sure the aggregation can be done in a better way...
data.bin=aggregate(data,list(bin),function(x) { return(c(mean(x),length(x)))})
# figure 2 - geom_point with binned x-axis, much nicer!
ggplot(data.bin,aes(x=x[,1],y=y[,1],size=x[,2])) + geom_point() + ylim(0,1)
Run Code Online (Sandbox Code Playgroud)
图1和2:

我为此编写了一个新的Stat函数.
这需要nbins,bin_var,bin_fun和summary_fun作为参数,以默认设置所有四个.
nbins取决于数据点的数量.bin_var值为"x".您也可以将其设置为"y".这指定了馈送到的变量bin_fun.bin_fun是分箱功能.默认情况下,这是seq_cut我为此目的而写的.您也可以编写自己的分箱功能.它只需要将数据和nbins作为参数.summary_fun是用于聚合分箱的汇总函数.默认情况下,它是mean.您还可以指定单独聚合函数x和y fun.x和fun.y.ymin和ymax美学,你还可以指定fun.ymin和fun.ymax.请注意,如果指定aes(group = your_bins),bin_fun则会被忽略,而是使用分组变量.另请注意,它将创建一个可以作为访问的计数变量..count...
在您的情况下,您使用它像这样:
p <- ggplot(data, aes(x, y)) +
geom_point(aes(size = ..count..), stat = "binner") +
ylim(0, 1)
Run Code Online (Sandbox Code Playgroud)
在这种情况下不是很有用(虽然这证明了同方差性,并且方差大约为0.25,因为伯尔尼(0.5)变量的假设)但仅仅是为了示例:
p + geom_linerange(stat = "binner",
fun.ymin = function(y) mean(y) - var(y) / 2,
fun.ymax = function(y) mean(y) + var(y) / 2)
Run Code Online (Sandbox Code Playgroud)

代码:
library(proto)
stat_binner <- function (mapping = NULL, data = NULL, geom = "point", position = "identity", ...) {
StatBinner$new(mapping = mapping, data = data, geom = geom, position = position, ...)
}
StatBinner <- proto(ggplot2:::Stat, {
objname <- "binner"
default_geom <- function(.) GeomPoint
required_aes <- c("x", "y")
calculate_groups <- function(., data, scales, bin_var = "x", nbins = NULL, bin_fun = seq_cut, summary_fun = mean,
fun.data = NULL, fun.y = NULL, fun.ymax = NULL, fun.ymin = NULL,
fun.x = NULL, fun.xmax = NULL, fun.xmin = NULL, na.rm = FALSE, ...) {
data <- remove_missing(data, na.rm, c("x", "y"), name = "stat_binner")
# Same rules as binnedplot in arm package
n <- nrow(data)
if (is.null(nbins)) {
nbins <- if (n >= 100) floor(sqrt(n))
else if (n > 10 & n < 100) 10
else floor(n/2)
}
if (length(unique(data$group)) == 1) {
data$group <- bin_fun(data[[bin_var]], nbins)
}
if (!missing(fun.data)) {
# User supplied function that takes complete data frame as input
fun.data <- match.fun(fun.data)
fun <- function(df, ...) {
fun.data(df$y, ...)
}
} else {
if (!is.null(summary_fun)) {
if (!is.null(fun.x)) message("fun.x overriden by summary_fun")
if (!is.null(fun.y)) message("fun.y overriden by summary_fun")
fun.x <- fun.y <- summary_fun
}
# User supplied individual vector functions
fs_x <- compact(list(xmin = fun.x, x = fun.x, xmax = fun.xmax))
fs_y <- compact(list(ymin = fun.ymin, y = fun.y, ymax = fun.ymax))
fun <- function(df, ...) {
res_x <- llply(fs_x, function(f) do.call(f, list(df$x, ...)))
res_y <- llply(fs_y, function(f) do.call(f, list(df$y, ...)))
names(res_y) <- names(fs_y)
names(res_x) <- names(fs_x)
as.data.frame(c(res_y, res_x))
}
}
summarise_by_x_and_y(data, fun, ...)
}
})
summarise_by_x_and_y <- function(data, summary, ...) {
summary <- ddply(data, "group", summary, ...)
count <- ddply(data, "group", summarize, count = length(y))
unique <- ddply(data, "group", ggplot2:::uniquecols)
unique$y <- NULL
unique$x <- NULL
res <- merge(merge(summary, unique, by = "group"), count, by = "group")
# Necessary for, eg, colour aesthetics
other_cols <- setdiff(names(data), c(names(summary), names(unique)))
if (length(other_cols) > 0) {
other <- ddply(data[, c(other_cols, "group")], "group", numcolwise(mean))
res <- merge(res, other, by = "group")
}
res
}
seq_cut <- function(x, nbins) {
bins <- seq(min(x), max(x), length.out = nbins)
findInterval(x, bins, rightmost.closed = TRUE)
}
Run Code Online (Sandbox Code Playgroud)