cel*_*Ail 8 r ggplot2 direct-labels
我正在使用直接标签来注释我的情节。正如你在这张图片中看到的,标签在 geom_line 之后,但我想要在 geom_smooth 之后。这是否受直接标签支持?或任何其他想法如何实现这一目标?提前致谢!
这是我的代码:
library(ggplot2)
library(directlabels)
set.seed(124234345)
# Generate data
df.2 <- data.frame("n_gram" = c("word1"),
"year" = rep(100:199),
"match_count" = runif(100 ,min = 1000 , max = 2000))
df.2 <- rbind(df.2, data.frame("n_gram" = c("word2"),
"year" = rep(100:199),
"match_count" = runif(100 ,min = 1000 , max = 2000)) )
# plot
ggplot(df.2, aes(year, match_count, group=n_gram, color=n_gram)) +
geom_line(alpha = I(7/10), color="grey", show_guide=F) +
stat_smooth(size=2, span=0.3, se=F, show_guide=F) +
geom_dl(aes(label=n_gram), method = "last.bumpup", show_guide=F) +
xlim(c(100,220))
Run Code Online (Sandbox Code Playgroud)
这个答案采用了 @celt-Ail 答案的基本概念,而不是函数、基础 R 和直接标签,而是尝试了 tidyverse 方法,从这里窃取了多个loess模型的一些代码。
很高兴听到改进建议。
set.seed(124234345)
# Generate data
df.2 <- data.frame("n_gram" = c("word1"),
"year" = rep(100:199),
"match_count" = runif(100 ,min = 1000 , max = 2000))
df.2 <- rbind(df.2, data.frame("n_gram" = c("word2"),
"year" = rep(100:199),
"match_count" = runif(100 ,min = 1000 , max = 2000)) )
#example of loess for multiple models
#/sf/answers/3858924121/
library(dplyr)
library(tidyr)
library(purrr)
library(ggplot2)
models <- df.2 %>%
tidyr::nest(-n_gram) %>%
dplyr::mutate(
# Perform loess calculation on each CpG group
m = purrr::map(data, loess,
formula = match_count ~ year, span = .3),
# Retrieve the fitted values from each model
fitted = purrr::map(m, `[[`, "fitted")
)
# Apply fitted y's as a new column
results <- models %>%
dplyr::select(-m) %>%
tidyr::unnest()
#find final x values for each group
my_last_points <- results %>% group_by(n_gram) %>% summarise(year = max(year, na.rm=TRUE))
#Join dataframe of predictions to group labels
my_last_points$pred_y <- left_join(my_last_points, results)
# Plot with loess line for each group
ggplot(results, aes(x = year, y = match_count, group = n_gram, colour = n_gram)) +
geom_line(alpha = I(7/10), color="grey", show.legend=F) +
#stat_smooth(size=2, span=0.3, se=F, show_guide=F)
geom_point() +
geom_line(aes(y = fitted))+
geom_text(data = my_last_points, aes(x=year+5, y=pred_y$fitted, label = n_gram))
Run Code Online (Sandbox Code Playgroud)
cel*_*Ail -1
我要在这里回答我自己的问题,因为我通过泰勒·林克的回复找到了答案。
这就是我使用 loess() 获取标签位置来解决它的方法。
# Function to get last Y-value from loess
funcDlMove <- function (n_gram) {
model <- loess(match_count ~ year, df.2[df.2$n_gram==n_gram,], span=0.3)
Y <- model$fitted[length(model$fitted)]
Y <- dl.move(n_gram, y=Y,x=200)
return(Y)
}
index <- unique(df.2$n_gram)
mymethod <- list(
"top.points",
lapply(index, funcDlMove)
)
# Plot
PLOT <- ggplot(df.2, aes(year, match_count, group=n_gram, color=n_gram)) +
geom_line(alpha = I(7/10), color="grey", show_guide=F) +
stat_smooth(size=2, span=0.3, se=F, show_guide=F)
direct.label(PLOT, mymethod)
Run Code Online (Sandbox Code Playgroud)
这将生成此图:https://i.stack.imgur.com/FGK1w.png