Pandas的文档中有许多用于处理以各种格式存储的数据的最佳实践示例.
但是,我无法找到使用MySQL等数据库的任何好例子.
任何人都可以指向我链接或给出一些代码片段,如何使用mysql-python将查询结果转换为Pandas中的数据帧有效吗?
小智 99
正如Wes所说,一旦你使用DBI兼容库获得数据库连接,io/sql的read_sql就会这样做.我们可以看两个简短的例子,使用MySQLdb和cx_Oracle库连接到Oracle和MySQL并查询它们的数据字典.以下示例为cx_Oracle:
import pandas as pd
import cx_Oracle
ora_conn = cx_Oracle.connect('your_connection_string')
df_ora = pd.read_sql('select * from user_objects', con=ora_conn)
print 'loaded dataframe from Oracle. # Records: ', len(df_ora)
ora_conn.close()
Run Code Online (Sandbox Code Playgroud)
这是相同的例子MySQLdb:
import MySQLdb
mysql_cn= MySQLdb.connect(host='myhost',
port=3306,user='myusername', passwd='mypassword',
db='information_schema')
df_mysql = pd.read_sql('select * from VIEWS;', con=mysql_cn)
print 'loaded dataframe from MySQL. records:', len(df_mysql)
mysql_cn.close()
Run Code Online (Sandbox Code Playgroud)
Kor*_*rem 56
对于这个问题的最近读者:pandas在他们的14.0版文档中有以下警告:
警告:某些现有函数或函数别名已弃用,将在以后的版本中删除.这包括:tquery,uquery,read_frame,frame_query,write_frame.
和:
警告:不推荐使用DBAPI连接对象时对'mysql'风格的支持.SQLAlchemy引擎(GH6900)将进一步支持MySQL.
这使得许多答案在这里过时了.你应该使用sqlalchemy:
from sqlalchemy import create_engine
import pandas as pd
engine = create_engine('dialect://user:pass@host:port/schema', echo=False)
f = pd.read_sql_query('SELECT * FROM mytable', engine, index_col = 'ID')
Run Code Online (Sandbox Code Playgroud)
mba*_*rov 23
为了记录,这是一个使用sqlite数据库的示例:
import pandas as pd
import sqlite3
with sqlite3.connect("whatever.sqlite") as con:
sql = "SELECT * FROM table_name"
df = pd.read_sql_query(sql, con)
print df.shape
Run Code Online (Sandbox Code Playgroud)
dmv*_*nna 19
我更喜欢用SQLAlchemy创建查询,然后从中创建一个DataFrame.如果您打算一遍又一遍地混合和匹配,SQLAlchemy可以更容易地以Python格式组合SQL条件.
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Table
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from pandas import DataFrame
import datetime
# We are connecting to an existing service
engine = create_engine('dialect://user:pwd@host:port/db', echo=False)
Session = sessionmaker(bind=engine)
session = Session()
Base = declarative_base()
# And we want to query an existing table
tablename = Table('tablename',
Base.metadata,
autoload=True,
autoload_with=engine,
schema='ownername')
# These are the "Where" parameters, but I could as easily
# create joins and limit results
us = tablename.c.country_code.in_(['US','MX'])
dc = tablename.c.locn_name.like('%DC%')
dt = tablename.c.arr_date >= datetime.date.today() # Give me convenience or...
q = session.query(tablename).\
filter(us & dc & dt) # That's where the magic happens!!!
def querydb(query):
"""
Function to execute query and return DataFrame.
"""
df = DataFrame(query.all());
df.columns = [x['name'] for x in query.column_descriptions]
return df
querydb(q)
Run Code Online (Sandbox Code Playgroud)
aer*_*sis 10
MySQL示例:
import MySQLdb as db
from pandas import DataFrame
from pandas.io.sql import frame_query
database = db.connect('localhost','username','password','database')
data = frame_query("SELECT * FROM data", database)
Run Code Online (Sandbox Code Playgroud)
小智 8
同样的语法也适用于使用podbc的Ms SQL服务器.
import pyodbc
import pandas.io.sql as psql
cnxn = pyodbc.connect('DRIVER={SQL Server};SERVER=servername;DATABASE=mydb;UID=username;PWD=password')
cursor = cnxn.cursor()
sql = ("""select * from mytable""")
df = psql.frame_query(sql, cnxn)
cnxn.close()
Run Code Online (Sandbox Code Playgroud)
这就是你使用psycopg2驱动程序连接到PostgreSQL的方法(如果你使用的是Debian Linux衍生操作系统,请安装"apt-get install python-psycopg2").
import pandas.io.sql as psql
import psycopg2
conn = psycopg2.connect("dbname='datawarehouse' user='user1' host='localhost' password='uberdba'")
q = """select month_idx, sum(payment) from bi_some_table"""
df3 = psql.frame_query(q, conn)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
112093 次 |
| 最近记录: |