如何在R中对一个平面列联表进行子集而不会丢失行和列名称?

eip*_*i10 10 formatting r subset

我正在使用ftable创建一个平坦的列联表.但是,当我对列联表进行子集化时,R会删除行名和列名.有没有办法对表进行子集,使行和列名保留在子集表中?这是一个例子:

# Create fake data
Group1 = sample(LETTERS[1:3], 20, replace=TRUE)
Group2 = sample(letters[1:3], 20, replace=TRUE)
Year = sample(c("2010","2011","2012"), 20, replace=TRUE)
df1 = data.frame(Group1, Group2, Year)

# Create flat contingency table with column margin
table1 = ftable(addmargins(table(df1$Group1, df1$Group2, df1$Year), margin=3))

# Select rows with sum greater than 2
table2 = table1[table1[ ,4] > 2, ]

> table1
     2010 2011 2012 Sum

A a     0    1    2   3
  b     2    1    0   3
  c     0    0    0   0
B a     0    1    1   2
  b     2    0    0   2
  c     1    0    1   2
C a     0    1    0   1
  b     1    0    2   3
  c     3    0    1   4

> table2
     [,1] [,2] [,3] [,4]
[1,]    0    1    2    3
[2,]    2    1    0    3
[3,]    1    0    2    3
[4,]    3    0    1    4
Run Code Online (Sandbox Code Playgroud)

注意R如何将子集化表转换为矩阵,去掉列名和行名的两个级别.如何在子集表中保留ftable结构?

flo*_*del 4

考虑使用频率数据框。这是一个更好使用的数据结构,特别是当您要过滤它时。这是一种使用 reshape 包构建的方法。

# cast the data into a data.frame
library(reshape)
df1$Freq <- 1
df2 <- cast(df1, Group1 + Group2 ~ Year, fun = sum, value = "Freq")
df2
#   Group1 Group2 2010 2011 2012
# 1      A      a    0    0    1
# 2      A      b    1    1    3
# 3      A      c    0    0    1
# 4      B      a    1    2    0
# 5      B      b    1    1    0
# 6      B      c    0    0    1
# 7      C      a    2    0    1
# 8      C      b    2    0    0
# 9      C      c    0    0    2

# add a column for the `Sum` of frequencies over the years
df2 <- within(df2, Sum <- `2010` + `2011` + `2012`)
df2
#   Group1 Group2 2010 2011 2012 Sum
# 1      A      a    0    0    1   1
# 2      A      b    1    1    3   5
# 3      A      c    0    0    1   1
# 4      B      a    1    2    0   3
# 5      B      b    1    1    0   2
# 6      B      c    0    0    1   1
# 7      C      a    2    0    1   3
# 8      C      b    2    0    0   2
# 9      C      c    0    0    2   2

df2[df2$Sum > 2, ]
#   Group1 Group2 2010 2011 2012 Sum
# 2      A      b    1    1    3   5
# 4      B      a    1    2    0   3
# 7      C      a    2    0    1   3
Run Code Online (Sandbox Code Playgroud)