无法多线程化可伸缩方法

Los*_*oul 6 java algorithm

更新:为了帮助澄清我的要求,我已经发布了一些可以解决问题的java代码.

前段时间我问一个问题,如何得到一个算法,打破了一组数字,当时的想法是给它编号列表(1,2,3,4,5)和共(10),它会找出每个将增加数的所有倍数达到总数('1*10'或' 1*1,1*2,1*3,1*4'或' 2*5'等等).这是我做过的第一次编程练习,所以它花了我一段时间才开始工作,但现在我想试着看看我是否可以扩展它.原问题中的人说它是可扩展的,但我对如何做到这一点感到困惑.递归部分是我在缩放组合所有结果的部分时遇到的区域(它所指的表是不可扩展的但是应用缓存我能够使它快速)

我有以下算法(伪代码):

//generates table
for i = 1 to k
    for z = 0 to sum:
        for c = 1 to z / x_i:
            if T[z - c * x_i][i - 1] is true:
                set T[z][i] to true

//uses table to bring all the parts together
function RecursivelyListAllThatWork(k, sum) // Using last k variables, make sum
    /* Base case: If we've assigned all the variables correctly, list this
     * solution.
     */
    if k == 0:
        print what we have so far
        return

    /* Recursive step: Try all coefficients, but only if they work. */
    for c = 0 to sum / x_k:
       if T[sum - c * x_k][k - 1] is true:
           mark the coefficient of x_k to be c
           call RecursivelyListAllThatWork(k - 1, sum - c * x_k)
           unmark the coefficient of x_k
Run Code Online (Sandbox Code Playgroud)

我真的对如何线程/多处理RecursivelyListAllThatWork函数感到茫然.我知道如果我发送一个较小的K(它是列表中项目总数的int),它将处理该子集但我不知道如何组合整个子集的结果.例如,如果列表是[1,2,3,4,5,6,7,8,9,10],我发送它K = 3然后只有1,2,3得到处理,这是好的,但如果我需要包含1和10的结果呢?我试图修改表(变量T),所以只有我想要的子集在那里,但仍然不起作用,因为,像上面的解决方案,它做了一个子集但不能处理需要更宽范围的答案.

我不需要任何代码,只要有人可以解释如何在概念上打破这个递归步骤,以便可以使用其他核心/机器.

更新:我似乎仍然无法弄清楚如何将RecursivelyListAllThatWork转换为runnable(我在技术上知道如何操作,但我不明白如何更改RecursivelyListAllThatWork算法,以便它可以并行运行.其他部分只是在这里使示例工作,我只需要在RecursivelyListAllThatWork方法上实现runnable).这是java代码:

import java.awt.Point;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;


public class main
{
    public static void main(String[] args)
    {
        System.out.println("starting..");
        int target_sum = 100;
        int[] data = new int[] { 10, 5, 50, 20, 25, 40 };
        List T = tableGeneator(target_sum, data);
        List<Integer> coeff = create_coeff(data.length);
        RecursivelyListAllThatWork(data.length, target_sum, T, coeff, data);
    }

    private static List<Integer> create_coeff(int i) {
        // TODO Auto-generated method stub
        Integer[] integers = new Integer[i];
        Arrays.fill(integers, 0);
        List<Integer> integerList = Arrays.asList(integers);
        return integerList;
    }


    private static void RecursivelyListAllThatWork(int k, int sum, List T, List<Integer> coeff, int[] data) {
        // TODO Auto-generated method stub
        if (k == 0) {
            //# print what we have so far
            for (int i = 0; i < coeff.size(); i++) {
                System.out.println(data[i] + " = " + coeff.get(i));
            }

            System.out.println("*******************");
            return;
        }

        Integer x_k = data[k-1];
        //  Recursive step: Try all coefficients, but only if they work. 
        for (int c = 0; c <= sum/x_k; c++) { //the c variable caps the percent
            if (T.contains(new Point((sum - c * x_k), (k-1))))
            {
                    // mark the coefficient of x_k to be c
                    coeff.set((k-1), c);
                    RecursivelyListAllThatWork((k - 1), (sum - c * x_k), T, coeff, data);
                    // unmark the coefficient of x_k
                    coeff.set((k-1), 0);
            }

        }

    }

    public static List tableGeneator(int target_sum, int[] data) {
        List T = new ArrayList();
        T.add(new Point(0, 0));

        float max_percent = 1;
        int R = (int) (target_sum * max_percent * data.length);
        for (int i = 0; i < data.length; i++)
        {
            for (int s = -R; s < R + 1; s++)
            {
                int max_value = (int) Math.abs((target_sum * max_percent)
                        / data[i]);
                for (int c = 0; c < max_value + 1; c++)
                {
                    if (T.contains(new Point(s - c * data[i], i)))
                    {
                        Point p = new Point(s, i + 1);
                        if (!T.contains(p))
                        {
                            T.add(p);
                        }
                    }
                }
            }
        }
        return T;
    }
} 
Run Code Online (Sandbox Code Playgroud)

Yve*_*tin 8

多线程的一般答案是通过堆栈(LIFO或FIFO)对递归实现进行去递归.当实现这样的算法时,线程的数量是算法的固定参数(例如,核的数量).

为了实现它,当测试条件结束递归时,语言调用堆栈被存储最后一个上下文作为检查点的堆栈替换.在您的情况下,它是k=0或者coeff值匹配目标总和.

在去再生之后,第一个实现是运行多个线程来使用堆栈但是堆栈访问成为争用点,因为它可能需要同步.

更好的可扩展解决方案是为每个线程专用堆栈,但是需要在堆栈中初始生成上下文.

我提出了一种混合方法,其中第一个线程以递归方式递归有限数量的k最大递归深度:对于示例中的小数据集为2,但我建议如果更大则为3.然后,第一部分将生成的中间上下文委托给一个线程池,该线程池将k使用非递归实现进行处理.此代码不是基于您使用的复杂算法,而是基于相当"基本"的实现:

import java.util.Arrays;
import java.util.ArrayDeque;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class MixedParallel
{
    // pre-requisite: sorted values !!
    private static final int[] data = new int[] { 5, 10, 20, 25, 40, 50 };

    // Context to store intermediate computation or a solution
    static class Context {
        int k;
        int sum;
        int[] coeff;
        Context(int k, int sum, int[] coeff) {
            this.k = k;
            this.sum = sum;
            this.coeff = coeff;
        }
    }

    // Thread pool for parallel execution
    private static ExecutorService executor;
    // Queue to collect solutions
    private static Queue<Context> solutions;

    static {
        final int numberOfThreads = 2;
        executor =
            new ThreadPoolExecutor(numberOfThreads, numberOfThreads, 1000, TimeUnit.SECONDS,
                                   new LinkedBlockingDeque<Runnable>());
        // concurrent because of multi-threaded insertions
        solutions = new ConcurrentLinkedQueue<Context>();
    }


    public static void main(String[] args)
    {
        int target_sum = 100;
        // result vector, init to 0
        int[] coeff = new int[data.length];
        Arrays.fill(coeff, 0);
        mixedPartialSum(data.length - 1, target_sum, coeff);

        executor.shutdown();
        // System.out.println("Over. Dumping results");
        while(!solutions.isEmpty()) {
            Context s = solutions.poll();
            printResult(s.coeff);
        }
    }

    private static void printResult(int[] coeff) {
        StringBuffer sb = new StringBuffer();
        for (int i = coeff.length - 1; i >= 0; i--) {
            if (coeff[i] > 0) {
                sb.append(data[i]).append(" * ").append(coeff[i]).append("   ");
            }
        }
        System.out.println(sb.append("from ").append(Thread.currentThread()));
    }

    private static void mixedPartialSum(int k, int sum, int[] coeff) {
        int x_k = data[k];
        for (int c = sum / x_k; c >= 0; c--) {
            coeff[k] = c;
            int[] newcoeff = Arrays.copyOf(coeff, coeff.length);
            if (c * x_k == sum) {
                //printResult(newcoeff);
                solutions.add(new Context(0, 0, newcoeff));
                continue;
            } else if (k > 0) {
                if (data.length - k < 2) {
                    mixedPartialSum(k - 1, sum - c * x_k, newcoeff);
                    // for loop on "c" goes on with previous coeff content
                } else {
                    // no longer recursive. delegate to thread pool
                    executor.submit(new ComputePartialSum(new Context(k - 1, sum - c * x_k, newcoeff)));
                }
            }
        }
    }

    static class ComputePartialSum implements Callable<Void> {
        // queue with contexts to process
        private Queue<Context> contexts;

        ComputePartialSum(Context request) {
            contexts = new ArrayDeque<Context>();
            contexts.add(request);
        }

        public Void call() {
            while(!contexts.isEmpty()) {
                Context current = contexts.poll();
                int x_k = data[current.k];
                for (int c = current.sum / x_k; c >= 0; c--) {
                    current.coeff[current.k] = c;
                    int[] newcoeff = Arrays.copyOf(current.coeff, current.coeff.length);
                    if (c * x_k == current.sum) {
                        //printResult(newcoeff);
                        solutions.add(new Context(0, 0, newcoeff));
                        continue;
                    } else if (current.k > 0) {
                        contexts.add(new Context(current.k - 1, current.sum - c * x_k, newcoeff));
                    }
                }
            }
            return null;
        }
    }
}
Run Code Online (Sandbox Code Playgroud)

您可以检查哪个线程找到了输出结果并检查所有被调用的内容:递归模式下的主线程和上下文堆栈模式下池中的两个线程.

现在这个实现在data.length高时可扩展:

  • 最大递归深度限于低级别的主线程
  • 池中的每个线程都使用自己的上下文堆栈而不与其他线程争用
  • 现在调整的参数是numberOfThreadsmaxRecursionDepth

所以答案是肯定的,你的算法可以并行化.这是一个基于您的代码的完全递归实现:

import java.awt.Point;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.ArrayDeque;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class OriginalParallel
{
    static final int numberOfThreads = 2;
    static final int maxRecursionDepth = 3;

    public static void main(String[] args)
    {
        int target_sum = 100;
        int[] data = new int[] { 50, 40, 25, 20, 10, 5 };
        List T = tableGeneator(target_sum, data);
        int[] coeff = new int[data.length];
        Arrays.fill(coeff, 0);
        RecursivelyListAllThatWork(data.length, target_sum, T, coeff, data);
        executor.shutdown();
    }

    private static void printResult(int[] coeff, int[] data) {
        StringBuffer sb = new StringBuffer();
        for (int i = coeff.length - 1; i >= 0; i--) {
            if (coeff[i] > 0) {
                sb.append(data[i]).append(" * ").append(coeff[i]).append("   ");
            }
        }
        System.out.println(sb.append("from ").append(Thread.currentThread()));
    }

    // Thread pool for parallel execution
    private static ExecutorService executor;
    static {
        executor =
            new ThreadPoolExecutor(numberOfThreads, numberOfThreads, 1000, TimeUnit.SECONDS,
                                   new LinkedBlockingDeque<Runnable>());
    }

    private static void RecursivelyListAllThatWork(int k, int sum, List T, int[] coeff, int[] data) {
        if (k == 0) {
            printResult(coeff, data);
            return;
        }
        Integer x_k = data[k-1];
        //  Recursive step: Try all coefficients, but only if they work. 
        for (int c = 0; c <= sum/x_k; c++) { //the c variable caps the percent
            if (T.contains(new Point((sum - c * x_k), (k-1)))) {
                    // mark the coefficient of x_k to be c
                    coeff[k-1] = c;
                    if (data.length - k != maxRecursionDepth) {
                        RecursivelyListAllThatWork((k - 1), (sum - c * x_k), T, coeff, data);
                    } else {
                        // delegate to thread pool when reaching depth 3
                        int[] newcoeff = Arrays.copyOf(coeff, coeff.length);
                        executor.submit(new RecursiveThread(k - 1, sum - c * x_k, T, newcoeff, data)); 
                    }
                    // unmark the coefficient of x_k
                    coeff[k-1] = 0;
            }
        }
    }

    static class RecursiveThread implements Callable<Void> {
        int k;
        int sum;
        int[] coeff;
        int[] data;
        List T;

        RecursiveThread(int k, int sum, List T, int[] coeff, int[] data) {
            this.k = k;
            this.sum = sum;
            this.T = T;
            this.coeff = coeff;
            this.data = data;
            System.out.println("New job for k=" + k);
        }

        public Void call() {
            RecursivelyListAllThatWork(k, sum, T, coeff, data);
            return null;
        }
    }

    public static List tableGeneator(int target_sum, int[] data) {
        List T = new ArrayList();
        T.add(new Point(0, 0));

        float max_percent = 1;
        int R = (int) (target_sum * max_percent * data.length);
        for (int i = 0; i < data.length; i++) {
            for (int s = -R; s < R + 1; s++) {
                int max_value = (int) Math.abs((target_sum * max_percent) / data[i]);
                for (int c = 0; c < max_value + 1; c++) {
                    if (T.contains(new Point(s - c * data[i], i))) {
                        Point p = new Point(s, i + 1);
                        if (!T.contains(p)) {
                            T.add(p);
                        }
                    }
                }
            }
        }
        return T;
    }
}
Run Code Online (Sandbox Code Playgroud)