bat*_*tty 36 c++ math matrix matrix-inverse
计算3x3矩阵逆的最简单方法是什么?
我只是在寻找一个简短的代码片段,它可以解决非奇异矩阵,可能使用Cramer的规则.它不需要高度优化.我更喜欢简单而不是速度.我宁愿不链接其他库.
Cor*_*lks 42
这是batty答案的一个版本,但这会计算正确的逆.batty的版本计算逆的转置.
// computes the inverse of a matrix m
double det = m(0, 0) * (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) -
m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0));
double invdet = 1 / det;
Matrix33d minv; // inverse of matrix m
minv(0, 0) = (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) * invdet;
minv(0, 1) = (m(0, 2) * m(2, 1) - m(0, 1) * m(2, 2)) * invdet;
minv(0, 2) = (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1)) * invdet;
minv(1, 0) = (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2)) * invdet;
minv(1, 1) = (m(0, 0) * m(2, 2) - m(0, 2) * m(2, 0)) * invdet;
minv(1, 2) = (m(1, 0) * m(0, 2) - m(0, 0) * m(1, 2)) * invdet;
minv(2, 0) = (m(1, 0) * m(2, 1) - m(2, 0) * m(1, 1)) * invdet;
minv(2, 1) = (m(2, 0) * m(0, 1) - m(0, 0) * m(2, 1)) * invdet;
minv(2, 2) = (m(0, 0) * m(1, 1) - m(1, 0) * m(0, 1)) * invdet;
Run Code Online (Sandbox Code Playgroud)
Suv*_*apa 32
你为什么不尝试自己编码呢?把它作为挑战.:)
对于3×3矩阵
alt text http://mathworld.wolfram.com/images/equations/MatrixInverse/NumberedEquation3.gif
矩阵逆是
alt text http://mathworld.wolfram.com/images/equations/MatrixInverse/NumberedEquation4.gif
我假设你知道矩阵| A |的决定因素是什么 是.
图像(c)Wolfram | Alpha和 mathworld.wolfram(06-11-09,22.06)
bat*_*tty 27
这段代码计算矩阵A 的转置逆:
double determinant = +A(0,0)*(A(1,1)*A(2,2)-A(2,1)*A(1,2))
-A(0,1)*(A(1,0)*A(2,2)-A(1,2)*A(2,0))
+A(0,2)*(A(1,0)*A(2,1)-A(1,1)*A(2,0));
double invdet = 1/determinant;
result(0,0) = (A(1,1)*A(2,2)-A(2,1)*A(1,2))*invdet;
result(1,0) = -(A(0,1)*A(2,2)-A(0,2)*A(2,1))*invdet;
result(2,0) = (A(0,1)*A(1,2)-A(0,2)*A(1,1))*invdet;
result(0,1) = -(A(1,0)*A(2,2)-A(1,2)*A(2,0))*invdet;
result(1,1) = (A(0,0)*A(2,2)-A(0,2)*A(2,0))*invdet;
result(2,1) = -(A(0,0)*A(1,2)-A(1,0)*A(0,2))*invdet;
result(0,2) = (A(1,0)*A(2,1)-A(2,0)*A(1,1))*invdet;
result(1,2) = -(A(0,0)*A(2,1)-A(2,0)*A(0,1))*invdet;
result(2,2) = (A(0,0)*A(1,1)-A(1,0)*A(0,1))*invdet;
虽然问题规定了非奇异矩阵,但您可能仍想检查行列式是否等于零(或非常接近零)并以某种方式标记它以确保安全.
对我们未知(雅虎)海报的所有应有的尊重,我看着这样的代码,只是在里面死了一点.调试字母汤非常难以调试.任何地方的任何一个错字都可能真的毁了你的一整天.可悲的是,这个特殊的例子缺少带有下划线的变量.当我们有a_b-c_d*e_f-g_h时,它会更有趣.特别是当使用_和 - 具有相同像素长度的字体时.
根据他的建议接受Suvesh Pratapa,我注意到:
Given 3x3 matrix:
y0x0 y0x1 y0x2
y1x0 y1x1 y1x2
y2x0 y2x1 y2x2
Declared as double matrix [/*Y=*/3] [/*X=*/3];
Run Code Online (Sandbox Code Playgroud)
(A)当拿一个3x3阵列的小调时,我们有4个感兴趣的值.较低的X/Y索引始终为0或1.较高的X/Y索引始终为1或2.始终!因此:
double determinantOfMinor( int theRowHeightY,
int theColumnWidthX,
const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
int x1 = theColumnWidthX == 0 ? 1 : 0; /* always either 0 or 1 */
int x2 = theColumnWidthX == 2 ? 1 : 2; /* always either 1 or 2 */
int y1 = theRowHeightY == 0 ? 1 : 0; /* always either 0 or 1 */
int y2 = theRowHeightY == 2 ? 1 : 2; /* always either 1 or 2 */
return ( theMatrix [y1] [x1] * theMatrix [y2] [x2] )
- ( theMatrix [y1] [x2] * theMatrix [y2] [x1] );
}
Run Code Online (Sandbox Code Playgroud)
(B)现在是行列式:(注意减号!)
double determinant( const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
return ( theMatrix [0] [0] * determinantOfMinor( 0, 0, theMatrix ) )
- ( theMatrix [0] [1] * determinantOfMinor( 0, 1, theMatrix ) )
+ ( theMatrix [0] [2] * determinantOfMinor( 0, 2, theMatrix ) );
}
Run Code Online (Sandbox Code Playgroud)
(C)逆现在是:
bool inverse( const double theMatrix [/*Y=*/3] [/*X=*/3],
double theOutput [/*Y=*/3] [/*X=*/3] )
{
double det = determinant( theMatrix );
/* Arbitrary for now. This should be something nicer... */
if ( ABS(det) < 1e-2 )
{
memset( theOutput, 0, sizeof theOutput );
return false;
}
double oneOverDeterminant = 1.0 / det;
for ( int y = 0; y < 3; y ++ )
for ( int x = 0; x < 3; x ++ )
{
/* Rule is inverse = 1/det * minor of the TRANSPOSE matrix. *
* Note (y,x) becomes (x,y) INTENTIONALLY here! */
theOutput [y] [x]
= determinantOfMinor( x, y, theMatrix ) * oneOverDeterminant;
/* (y0,x1) (y1,x0) (y1,x2) and (y2,x1) all need to be negated. */
if( 1 == ((x + y) % 2) )
theOutput [y] [x] = - theOutput [y] [x];
}
return true;
}
Run Code Online (Sandbox Code Playgroud)
并使用一些质量较低的测试代码进行完善:
void printMatrix( const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
for ( int y = 0; y < 3; y ++ )
{
cout << "[ ";
for ( int x = 0; x < 3; x ++ )
cout << theMatrix [y] [x] << " ";
cout << "]" << endl;
}
cout << endl;
}
void matrixMultiply( const double theMatrixA [/*Y=*/3] [/*X=*/3],
const double theMatrixB [/*Y=*/3] [/*X=*/3],
double theOutput [/*Y=*/3] [/*X=*/3] )
{
for ( int y = 0; y < 3; y ++ )
for ( int x = 0; x < 3; x ++ )
{
theOutput [y] [x] = 0;
for ( int i = 0; i < 3; i ++ )
theOutput [y] [x] += theMatrixA [y] [i] * theMatrixB [i] [x];
}
}
int
main(int argc, char **argv)
{
if ( argc > 1 )
SRANDOM( atoi( argv[1] ) );
double m[3][3] = { { RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) },
{ RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) },
{ RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) } };
double o[3][3], mm[3][3];
if ( argc <= 2 )
cout << fixed << setprecision(3);
printMatrix(m);
cout << endl << endl;
SHOW( determinant(m) );
cout << endl << endl;
BOUT( inverse(m, o) );
printMatrix(m);
printMatrix(o);
cout << endl << endl;
matrixMultiply (m, o, mm );
printMatrix(m);
printMatrix(o);
printMatrix(mm);
cout << endl << endl;
}
Run Code Online (Sandbox Code Playgroud)
您可能还想检测非常大的决定因素,因为舍入误差会影响您的准确性!
| 归档时间: |
|
| 查看次数: |
99720 次 |
| 最近记录: |