MFB*_*MFB 397 python list duplicates
如何在Python列表中找到重复项并创建另一个重复项列表?该列表仅包含整数.
geo*_*org 494
删除重复使用set(a)
.要打印重复项,例如:
a = [1,2,3,2,1,5,6,5,5,5]
import collections
print [item for item, count in collections.Counter(a).items() if count > 1]
## [1, 2, 5]
Run Code Online (Sandbox Code Playgroud)
请注意,这Counter
不是特别有效(时间),可能在这里有点过分.set
会表现得更好.此代码计算源顺序中的唯一元素列表:
seen = set()
uniq = []
for x in a:
if x not in seen:
uniq.append(x)
seen.add(x)
Run Code Online (Sandbox Code Playgroud)
或者,更简洁地说:
seen = set()
uniq = [x for x in a if x not in seen and not seen.add(x)]
Run Code Online (Sandbox Code Playgroud)
我不推荐后一种风格,因为它不明显not seen.add(x)
在做什么(set add()
方法总是返回None
,因此需要not
).
要计算没有库的重复元素列表:
seen = {}
dupes = []
for x in a:
if x not in seen:
seen[x] = 1
else:
if seen[x] == 1:
dupes.append(x)
seen[x] += 1
Run Code Online (Sandbox Code Playgroud)
如果列表元素不可清除,则不能使用集合/ dicts并且必须求助于二次时间解决方案(将每个解析比较每个).例如:
a = [[1], [2], [3], [1], [5], [3]]
no_dupes = [x for n, x in enumerate(a) if x not in a[:n]]
print no_dupes # [[1], [2], [3], [5]]
dupes = [x for n, x in enumerate(a) if x in a[:n]]
print dupes # [[1], [3]]
Run Code Online (Sandbox Code Playgroud)
小智 302
>>> l = [1,2,3,4,4,5,5,6,1]
>>> set([x for x in l if l.count(x) > 1])
set([1, 4, 5])
Run Code Online (Sandbox Code Playgroud)
moo*_*eep 77
您不需要计数,只需要查看之前是否看过该项目.改编了这个问题的答案:
def list_duplicates(seq):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in seq if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
a = [1,2,3,2,1,5,6,5,5,5]
list_duplicates(a) # yields [1, 2, 5]
Run Code Online (Sandbox Code Playgroud)
为了防止速度问题,这里有一些时间:
# file: test.py
import collections
def thg435(l):
return [x for x, y in collections.Counter(l).items() if y > 1]
def moooeeeep(l):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in l if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
def RiteshKumar(l):
return list(set([x for x in l if l.count(x) > 1]))
def JohnLaRooy(L):
seen = set()
seen2 = set()
seen_add = seen.add
seen2_add = seen2.add
for item in L:
if item in seen:
seen2_add(item)
else:
seen_add(item)
return list(seen2)
l = [1,2,3,2,1,5,6,5,5,5]*100
Run Code Online (Sandbox Code Playgroud)
以下是结果:(做得好@JohnLaRooy!)
$ python -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
10000 loops, best of 3: 74.6 usec per loop
$ python -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 91.3 usec per loop
$ python -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 266 usec per loop
$ python -mtimeit -s 'import test' 'test.RiteshKumar(test.l)'
100 loops, best of 3: 8.35 msec per loop
Run Code Online (Sandbox Code Playgroud)
有趣的是,除了时间本身,当使用pypy时,排名也略有变化.最有趣的是,基于计数器的方法从pypy的优化中获益匪浅,而我建议的方法缓存方法似乎几乎没有效果.
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
100000 loops, best of 3: 17.8 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
10000 loops, best of 3: 23 usec per loop
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 39.3 usec per loop
Run Code Online (Sandbox Code Playgroud)
显然,这种效果与输入数据的"重复性"有关.我已经设定l = [random.randrange(1000000) for i in xrange(10000)]
并得到了这些结果:
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
1000 loops, best of 3: 495 usec per loop
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
1000 loops, best of 3: 499 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 1.68 msec per loop
Run Code Online (Sandbox Code Playgroud)
F1R*_*ors 29
我在查看相关内容时遇到了这个问题 - 并想知道为什么没有人提供基于发电机的解决方案?解决这个问题将是:
>>> print list(getDupes_9([1,2,3,2,1,5,6,5,5,5]))
[1, 2, 5]
Run Code Online (Sandbox Code Playgroud)
我关注可扩展性,因此测试了几种方法,包括在小型列表上运行良好的天真项目,但随着列表变得更大而规模可怕(注意 - 使用timeit会更好,但这是说明性的).
我将@moooeeeep包括在内进行比较(它的速度非常快:如果输入列表完全是随机的,速度最快)和迭代工具,对于大多数排序列表来说再次更快......现在包括来自@firelynx的pandas方法 - 慢,但不是可怕的,简单的.注意 - 排序/开球/拉链方法在我的机器上对于大多数有序列表而言始终是最快的,对于洗牌列表来说moooeeeep是最快的,但您的里程可能会有所不同.
好处
假设
最快的解决方案,1米条目:
def getDupes(c):
'''sort/tee/izip'''
a, b = itertools.tee(sorted(c))
next(b, None)
r = None
for k, g in itertools.izip(a, b):
if k != g: continue
if k != r:
yield k
r = k
Run Code Online (Sandbox Code Playgroud)
测试方法
import itertools
import time
import random
def getDupes_1(c):
'''naive'''
for i in xrange(0, len(c)):
if c[i] in c[:i]:
yield c[i]
def getDupes_2(c):
'''set len change'''
s = set()
for i in c:
l = len(s)
s.add(i)
if len(s) == l:
yield i
def getDupes_3(c):
'''in dict'''
d = {}
for i in c:
if i in d:
if d[i]:
yield i
d[i] = False
else:
d[i] = True
def getDupes_4(c):
'''in set'''
s,r = set(),set()
for i in c:
if i not in s:
s.add(i)
elif i not in r:
r.add(i)
yield i
def getDupes_5(c):
'''sort/adjacent'''
c = sorted(c)
r = None
for i in xrange(1, len(c)):
if c[i] == c[i - 1]:
if c[i] != r:
yield c[i]
r = c[i]
def getDupes_6(c):
'''sort/groupby'''
def multiple(x):
try:
x.next()
x.next()
return True
except:
return False
for k, g in itertools.ifilter(lambda x: multiple(x[1]), itertools.groupby(sorted(c))):
yield k
def getDupes_7(c):
'''sort/zip'''
c = sorted(c)
r = None
for k, g in zip(c[:-1],c[1:]):
if k == g:
if k != r:
yield k
r = k
def getDupes_8(c):
'''sort/izip'''
c = sorted(c)
r = None
for k, g in itertools.izip(c[:-1],c[1:]):
if k == g:
if k != r:
yield k
r = k
def getDupes_9(c):
'''sort/tee/izip'''
a, b = itertools.tee(sorted(c))
next(b, None)
r = None
for k, g in itertools.izip(a, b):
if k != g: continue
if k != r:
yield k
r = k
def getDupes_a(l):
'''moooeeeep'''
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
for x in l:
if x in seen or seen_add(x):
yield x
def getDupes_b(x):
'''iter*/sorted'''
x = sorted(x)
def _matches():
for k,g in itertools.izip(x[:-1],x[1:]):
if k == g:
yield k
for k, n in itertools.groupby(_matches()):
yield k
def getDupes_c(a):
'''pandas'''
import pandas as pd
vc = pd.Series(a).value_counts()
i = vc[vc > 1].index
for _ in i:
yield _
def hasDupes(fn,c):
try:
if fn(c).next(): return True # Found a dupe
except StopIteration:
pass
return False
def getDupes(fn,c):
return list(fn(c))
STABLE = True
if STABLE:
print 'Finding FIRST then ALL duplicates, single dupe of "nth" placed element in 1m element array'
else:
print 'Finding FIRST then ALL duplicates, single dupe of "n" included in randomised 1m element array'
for location in (50,250000,500000,750000,999999):
for test in (getDupes_2, getDupes_3, getDupes_4, getDupes_5, getDupes_6,
getDupes_8, getDupes_9, getDupes_a, getDupes_b, getDupes_c):
print 'Test %-15s:%10d - '%(test.__doc__ or test.__name__,location),
deltas = []
for FIRST in (True,False):
for i in xrange(0, 5):
c = range(0,1000000)
if STABLE:
c[0] = location
else:
c.append(location)
random.shuffle(c)
start = time.time()
if FIRST:
print '.' if location == test(c).next() else '!',
else:
print '.' if [location] == list(test(c)) else '!',
deltas.append(time.time()-start)
print ' -- %0.3f '%(sum(deltas)/len(deltas)),
print
print
Run Code Online (Sandbox Code Playgroud)
'all dupes'测试的结果是一致的,在这个数组中发现"第一个"重复然后"全部"重复:
Finding FIRST then ALL duplicates, single dupe of "nth" placed element in 1m element array
Test set len change : 500000 - . . . . . -- 0.264 . . . . . -- 0.402
Test in dict : 500000 - . . . . . -- 0.163 . . . . . -- 0.250
Test in set : 500000 - . . . . . -- 0.163 . . . . . -- 0.249
Test sort/adjacent : 500000 - . . . . . -- 0.159 . . . . . -- 0.229
Test sort/groupby : 500000 - . . . . . -- 0.860 . . . . . -- 1.286
Test sort/izip : 500000 - . . . . . -- 0.165 . . . . . -- 0.229
Test sort/tee/izip : 500000 - . . . . . -- 0.145 . . . . . -- 0.206 *
Test moooeeeep : 500000 - . . . . . -- 0.149 . . . . . -- 0.232
Test iter*/sorted : 500000 - . . . . . -- 0.160 . . . . . -- 0.221
Test pandas : 500000 - . . . . . -- 0.493 . . . . . -- 0.499
Run Code Online (Sandbox Code Playgroud)
当列表首先被洗牌时,排序的价格变得明显 - 效率明显下降并且@moooeeeep方法占主导地位,set和dict方法相似但是表现不佳:
Finding FIRST then ALL duplicates, single dupe of "n" included in randomised 1m element array
Test set len change : 500000 - . . . . . -- 0.321 . . . . . -- 0.473
Test in dict : 500000 - . . . . . -- 0.285 . . . . . -- 0.360
Test in set : 500000 - . . . . . -- 0.309 . . . . . -- 0.365
Test sort/adjacent : 500000 - . . . . . -- 0.756 . . . . . -- 0.823
Test sort/groupby : 500000 - . . . . . -- 1.459 . . . . . -- 1.896
Test sort/izip : 500000 - . . . . . -- 0.786 . . . . . -- 0.845
Test sort/tee/izip : 500000 - . . . . . -- 0.743 . . . . . -- 0.804
Test moooeeeep : 500000 - . . . . . -- 0.234 . . . . . -- 0.311 *
Test iter*/sorted : 500000 - . . . . . -- 0.776 . . . . . -- 0.840
Test pandas : 500000 - . . . . . -- 0.539 . . . . . -- 0.540
Run Code Online (Sandbox Code Playgroud)
MSe*_*ert 28
你可以使用iteration_utilities.duplicates
:
>>> from iteration_utilities import duplicates
>>> list(duplicates([1,1,2,1,2,3,4,2]))
[1, 1, 2, 2]
Run Code Online (Sandbox Code Playgroud)
或者如果您只想要每个副本中的一个,则可以将其与iteration_utilities.unique_everseen
以下内容结合使
>>> from iteration_utilities import unique_everseen
>>> list(unique_everseen(duplicates([1,1,2,1,2,3,4,2])))
[1, 2]
Run Code Online (Sandbox Code Playgroud)
它还可以处理不可用的元素(但是以性能为代价):
>>> list(duplicates([[1], [2], [1], [3], [1]]))
[[1], [1]]
>>> list(unique_everseen(duplicates([[1], [2], [1], [3], [1]])))
[[1]]
Run Code Online (Sandbox Code Playgroud)
这是其中只有少数其他方法可以处理的东西.
我做了一个包含大多数(但不是全部)这里提到的方法的快速基准测试.
第一个基准仅包括一小部分列表长度,因为某些方法具有O(n**2)
行为.
在图中,y轴表示时间,因此较低的值表示更好.它还绘制了log-log,因此可以更好地显示各种值:
删除O(n**2)
方法我在列表中做了另外50个元素的基准测试:
正如您所看到的,该iteration_utilities.duplicates
方法比任何其他方法unique_everseen(duplicates(...))
都快,甚至链接比其他方法更快或更快.
另外一个值得注意的有趣的事情是,对于小型列表而言,大熊猫方法非常慢,但很容易竞争更长的列表.
然而,由于这些基准测试显示大多数方法的执行大致相同,因此使用哪一个并不重要(除了具有O(n**2)
运行时的3个).
from iteration_utilities import duplicates, unique_everseen
from collections import Counter
import pandas as pd
import itertools
def georg_counter(it):
return [item for item, count in Counter(it).items() if count > 1]
def georg_set(it):
seen = set()
uniq = []
for x in it:
if x not in seen:
uniq.append(x)
seen.add(x)
def georg_set2(it):
seen = set()
return [x for x in it if x not in seen and not seen.add(x)]
def georg_set3(it):
seen = {}
dupes = []
for x in it:
if x not in seen:
seen[x] = 1
else:
if seen[x] == 1:
dupes.append(x)
seen[x] += 1
def RiteshKumar_count(l):
return set([x for x in l if l.count(x) > 1])
def moooeeeep(seq):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in seq if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
def F1Rumors_implementation(c):
a, b = itertools.tee(sorted(c))
next(b, None)
r = None
for k, g in zip(a, b):
if k != g: continue
if k != r:
yield k
r = k
def F1Rumors(c):
return list(F1Rumors_implementation(c))
def Edward(a):
d = {}
for elem in a:
if elem in d:
d[elem] += 1
else:
d[elem] = 1
return [x for x, y in d.items() if y > 1]
def wordsmith(a):
return pd.Series(a)[pd.Series(a).duplicated()].values
def NikhilPrabhu(li):
li = li.copy()
for x in set(li):
li.remove(x)
return list(set(li))
def firelynx(a):
vc = pd.Series(a).value_counts()
return vc[vc > 1].index.tolist()
def HenryDev(myList):
newList = set()
for i in myList:
if myList.count(i) >= 2:
newList.add(i)
return list(newList)
def yota(number_lst):
seen_set = set()
duplicate_set = set(x for x in number_lst if x in seen_set or seen_set.add(x))
return seen_set - duplicate_set
def IgorVishnevskiy(l):
s=set(l)
d=[]
for x in l:
if x in s:
s.remove(x)
else:
d.append(x)
return d
def it_duplicates(l):
return list(duplicates(l))
def it_unique_duplicates(l):
return list(unique_everseen(duplicates(l)))
Run Code Online (Sandbox Code Playgroud)
from simple_benchmark import benchmark
import random
funcs = [
georg_counter, georg_set, georg_set2, georg_set3, RiteshKumar_count, moooeeeep,
F1Rumors, Edward, wordsmith, NikhilPrabhu, firelynx,
HenryDev, yota, IgorVishnevskiy, it_duplicates, it_unique_duplicates
]
args = {2**i: [random.randint(0, 2**(i-1)) for _ in range(2**i)] for i in range(2, 12)}
b = benchmark(funcs, args, 'list size')
b.plot()
Run Code Online (Sandbox Code Playgroud)
funcs = [
georg_counter, georg_set, georg_set2, georg_set3, moooeeeep,
F1Rumors, Edward, wordsmith, firelynx,
yota, IgorVishnevskiy, it_duplicates, it_unique_duplicates
]
args = {2**i: [random.randint(0, 2**(i-1)) for _ in range(2**i)] for i in range(2, 20)}
b = benchmark(funcs, args, 'list size')
b.plot()
Run Code Online (Sandbox Code Playgroud)
1这是我写的第三方图书馆:iteration_utilities
.
小智 10
collections.Counter是python 2.7中的新功能:
Python 2.5.4 (r254:67916, May 31 2010, 15:03:39)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-46)] on linux2
a = [1,2,3,2,1,5,6,5,5,5]
import collections
print [x for x, y in collections.Counter(a).items() if y > 1]
Type "help", "copyright", "credits" or "license" for more information.
File "", line 1, in
AttributeError: 'module' object has no attribute 'Counter'
>>>
Run Code Online (Sandbox Code Playgroud)
在早期版本中,您可以使用传统的dict代替:
a = [1,2,3,2,1,5,6,5,5,5]
d = {}
for elem in a:
if elem in d:
d[elem] += 1
else:
d[elem] = 1
print [x for x, y in d.items() if y > 1]
Run Code Online (Sandbox Code Playgroud)
wor*_*ith 10
使用熊猫:
>>> import pandas as pd
>>> a = [1, 2, 1, 3, 3, 3, 0]
>>> pd.Series(a)[pd.Series(a).duplicated()].values
array([1, 3, 3])
Run Code Online (Sandbox Code Playgroud)
Python 3.8 one-liner 如果您不想编写自己的算法或使用库:
l = [1,2,3,2,1,5,6,5,5,5]
res = [(x, count) for x, g in groupby(sorted(l)) if (count := len(list(g))) > 1]
print(res)
Run Code Online (Sandbox Code Playgroud)
打印项目和计数:
[(1, 2), (2, 2), (5, 4)]
Run Code Online (Sandbox Code Playgroud)
groupby
采用分组功能,因此您可以以不同方式定义分组并Tuple
根据需要返回其他字段。
我想在列表中查找重复项的最有效方法是:
from collections import Counter
def duplicates(values):
dups = Counter(values) - Counter(set(values))
return list(dups.keys())
print(duplicates([1,2,3,6,5,2]))
Run Code Online (Sandbox Code Playgroud)
它Counter
在所有元素上使用一次,然后在所有唯一元素上使用。用第二个减去第一个将只留下重复项。
这是一个简洁明了的解决方案 -
for x in set(li):
li.remove(x)
li = list(set(li))
Run Code Online (Sandbox Code Playgroud)
我们可以使用itertools.groupby
来查找所有有重复的项目:
from itertools import groupby
myList = [2, 4, 6, 8, 4, 6, 12]
# when the list is sorted, groupby groups by consecutive elements which are similar
for x, y in groupby(sorted(myList)):
# list(y) returns all the occurences of item x
if len(list(y)) > 1:
print x
Run Code Online (Sandbox Code Playgroud)
输出将是:
4
6
Run Code Online (Sandbox Code Playgroud)
尽管其复杂度为 O(n log n),但这似乎有些竞争力,请参阅下面的基准测试。
a = sorted(a)
dupes = list(set(a[::2]) & set(a[1::2]))
Run Code Online (Sandbox Code Playgroud)
排序使重复项彼此相邻,因此它们既位于偶数索引又位于奇数索引。唯一值仅位于偶数或奇数索引处,而不是同时位于两者处。因此偶数索引值和奇数索引值的交集就是重复项。
这使用MSeifert 的基准,但仅使用已接受答案(georgs)中的解决方案、最慢的解决方案、最快的解决方案(排除,it_duplicates
因为它不能唯一化重复项)和我的。否则会太拥挤而且颜色太相似。
第一行可能是a.sort()
如果我们被允许修改给定的列表,那会更快一些。但基准测试多次重复使用相同的列表,因此修改它会扰乱基准测试。
显然set(a[::2]).intersection(a[1::2])
不会创建第二组并且速度更快一点,但是嗯,它也更长一点。
我会用熊猫做这件事,因为我经常使用熊猫
import pandas as pd
a = [1,2,3,3,3,4,5,6,6,7]
vc = pd.Series(a).value_counts()
vc[vc > 1].index.tolist()
Run Code Online (Sandbox Code Playgroud)
给
[3,6]
Run Code Online (Sandbox Code Playgroud)
可能效率不高,但肯定的代码少于其他很多答案,所以我想我会做出贡献
接受的答案的第三个例子给出了错误的答案,并没有试图给出重复的答案.这是正确的版本:
number_lst = [1, 1, 2, 3, 5, ...]
seen_set = set()
duplicate_set = set(x for x in number_lst if x in seen_set or seen_set.add(x))
unique_set = seen_set - duplicate_set
Run Code Online (Sandbox Code Playgroud)
如何通过检查出现次数简单地遍历列表中的每个元素,然后将它们添加到一个集合,然后打印重复项.希望这有助于那里的人.
myList = [2 ,4 , 6, 8, 4, 6, 12];
newList = set()
for i in myList:
if myList.count(i) >= 2:
newList.add(i)
print(list(newList))
## [4 , 6]
Run Code Online (Sandbox Code Playgroud)
没有转换为列表,可能最简单的方式将是如下所示. 当他们要求不使用套装时,这可能在面试中很有用
a=[1,2,3,3,3]
dup=[]
for each in a:
if each not in dup:
dup.append(each)
print(dup)
Run Code Online (Sandbox Code Playgroud)
======= else获取2个独立值和重复值的单独列表
a=[1,2,3,3,3]
uniques=[]
dups=[]
for each in a:
if each not in uniques:
uniques.append(each)
else:
dups.append(each)
print("Unique values are below:")
print(uniques)
print("Duplicate values are below:")
print(dups)
Run Code Online (Sandbox Code Playgroud)
小智 5
有点晚了,但可能对某些人有帮助。对于更大的列表,我发现这对我有用。
l=[1,2,3,5,4,1,3,1]
s=set(l)
d=[]
for x in l:
if x in s:
s.remove(x)
else:
d.append(x)
d
[1,3,1]
Run Code Online (Sandbox Code Playgroud)
仅显示所有重复项并保留顺序。