Python中大数的高斯核密度估计(KDE)

Pro*_*eos 4 python statistics matplotlib scipy

我有1000个大数,随机分布在37231到56661之间.

我试图使用stats.gaussian_kde但有些东西不起作用.(也许是因为我对统计学知识不足?)

这是代码:

from scipy import stats.gaussian_kde
import matplotlib.pyplot as plt

# 'data' is a 1D array that contains the initial numbers 37231 to 56661
xmin = min(data)
xmax = max(data)   

# get evenly distributed numbers for X axis.
x = linspace(xmin, xmax, 1000)   # get 1000 points on x axis
nPoints = len(x)

# get actual kernel density.
density = gaussian_kde(data)
y = density(x)

# print the output data
for i in range(nPoints):
    print "%s   %s" % (x[i], y[i])

plt.plot(x, density(x))
plt.show()
Run Code Online (Sandbox Code Playgroud)

在打印输出中,我在第1列中获得x值,在第2列中获得零.该图显示了一条平线.

我根本找不到解决方案.我尝试了非常广泛的X-es,结果相同.

问题是什么?我究竟做错了什么?大数字可能是原因吗?

DSM*_*DSM 7

我认为发生的事情是你的数据数组由整数组成,这会导致问题:

>>> import numpy, scipy.stats
>>> 
>>> data = numpy.random.randint(37231, 56661,size=10)
>>> xmin, xmax = min(data), max(data)
>>> x = numpy.linspace(xmin, xmax, 10)
>>> 
>>> density = scipy.stats.gaussian_kde(data)
>>> density.dataset
array([[52605, 45451, 46029, 40379, 48885, 41262, 39248, 38247, 55987,
        44019]])
>>> density(x)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Run Code Online (Sandbox Code Playgroud)

但是如果我们使用浮点数:

>>> density = scipy.stats.gaussian_kde(data*1.0)
>>> density.dataset
array([[ 52605.,  45451.,  46029.,  40379.,  48885.,  41262.,  39248.,
         38247.,  55987.,  44019.]])
>>> density(x)
array([  4.42201513e-05,   5.51130237e-05,   5.94470211e-05,
         5.78485526e-05,   5.21379448e-05,   4.43176188e-05,
         3.66725694e-05,   3.06297511e-05,   2.56191024e-05,
         2.01305127e-05])
Run Code Online (Sandbox Code Playgroud)