使用在python中调用外部命令来控制子进程的数量

Ven*_*tta 13 python parallel-processing subprocess multiprocessing

我理解使用subprocess是调用外部命令的首选方式.

但是如果我想在parall中运行几个命令,但是限制生成的进程数呢?困扰我的是我无法阻止子进程.例如,如果我打电话

subprocess.Popen(cmd, stderr=outputfile, stdout=outputfile)
Run Code Online (Sandbox Code Playgroud)

然后该过程将继续,无需等待cmd完成.因此,我无法将其包装在multiprocessing图书馆的工作人员中.

例如,如果我这样做:

def worker(cmd): 
    subprocess.Popen(cmd, stderr=outputfile, stdout=outputfile);

pool = Pool( processes = 10 );
results =[pool.apply_async(worker, [cmd]) for cmd in cmd_list];
ans = [res.get() for res in results];
Run Code Online (Sandbox Code Playgroud)

然后每个工人将在产生子流程后完成并返回.所以我无法真正限制subprocess使用生成的进程数Pool.

什么是限制子过程数量的正确方法?

jfs*_*jfs 13

您不需要多个Python进程甚至线程来限制并行子进程的最大数量:

from itertools import izip_longest
from subprocess import Popen, STDOUT

groups = [(Popen(cmd, stdout=outputfile, stderr=STDOUT)
          for cmd in commands)] * limit # itertools' grouper recipe
for processes in izip_longest(*groups): # run len(processes) == limit at a time
    for p in filter(None, processes):
        p.wait()
Run Code Online (Sandbox Code Playgroud)

请参阅Python中的chunks(of​​ n)迭代迭代器?

如果要限制并行子进程的最大和最小数量,可以使用线程池:

from multiprocessing.pool import ThreadPool
from subprocess import STDOUT, call

def run(cmd):
    return cmd, call(cmd, stdout=outputfile, stderr=STDOUT)

for cmd, rc in ThreadPool(limit).imap_unordered(run, commands):
    if rc != 0:
        print('{cmd} failed with exit status: {rc}'.format(**vars()))
Run Code Online (Sandbox Code Playgroud)

只要任何子limit进程结束,就会启动一个新的子进程以始终保持limit子进程数.

或使用ThreadPoolExecutor:

from concurrent.futures import ThreadPoolExecutor # pip install futures
from subprocess import STDOUT, call

with ThreadPoolExecutor(max_workers=limit) as executor:
    for cmd in commands:
        executor.submit(call, cmd, stdout=outputfile, stderr=STDOUT)
Run Code Online (Sandbox Code Playgroud)

这是一个简单的线程池实现:

import subprocess
from threading import Thread

try: from queue import Queue
except ImportError:
    from Queue import Queue # Python 2.x


def worker(queue):
    for cmd in iter(queue.get, None):
        subprocess.check_call(cmd, stdout=outputfile, stderr=subprocess.STDOUT)

q = Queue()
threads = [Thread(target=worker, args=(q,)) for _ in range(limit)]
for t in threads: # start workers
    t.daemon = True
    t.start()

for cmd in commands:  # feed commands to threads
    q.put_nowait(cmd)

for _ in threads: q.put(None) # signal no more commands
for t in threads: t.join()    # wait for completion
Run Code Online (Sandbox Code Playgroud)

为避免过早退出,请添加异常处理.

如果要捕获字符串中的子进程输出,请参阅Python:并行执行cat子进程.


lar*_*sks 6

subprocess.call如果要等待命令完成,可以使用.有关pydoc subprocess更多信息,请参阅

您也可以Popen.wait在您的worker中调用该方法:

def worker(cmd): 
    p = subprocess.Popen(cmd, stderr=outputfile, stdout=outputfile);
    p.wait()
Run Code Online (Sandbox Code Playgroud)

  • 这完全禁用并行处理 (2认同)
  • 它不应该.问题是使用`multiprocessing`模块,每个worker都是在一个单独的进程中生成的,所以在一个worker中`wait()`不会阻止其他worker运行.也就是说,这本身并不正确 - 这个例子并没有从工人那里"返回"任何东西,所以在结果上调用`.get()`将不会返回任何东西. (2认同)