Mik*_*eTP 143 aggregate r dataframe r-faq data.table
从数据帧,是否有聚集(一个简单的方法sum,mean,max同时等c)中多个变量?
以下是一些示例数据:
library(lubridate)
days = 365*2
date = seq(as.Date("2000-01-01"), length = days, by = "day")
year = year(date)
month = month(date)
x1 = cumsum(rnorm(days, 0.05))
x2 = cumsum(rnorm(days, 0.05))
df1 = data.frame(date, year, month, x1, x2)
Run Code Online (Sandbox Code Playgroud)
我想同时按年和月汇总数据框中的变量x1和x2变量df2.以下代码聚合x1变量,但是是否也可以同时聚合x2变量?
### aggregate variables by year month
df2=aggregate(x1 ~ year+month, data=df1, sum, na.rm=TRUE)
head(df2)
Run Code Online (Sandbox Code Playgroud)
任何建议将不胜感激.
And*_*rie 181
是的,在你的formula,你可以cbind聚合数字变量:
aggregate(cbind(x1, x2) ~ year + month, data = df1, sum, na.rm = TRUE)
year month x1 x2
1 2000 1 7.862002 -7.469298
2 2001 1 276.758209 474.384252
3 2000 2 13.122369 -128.122613
...
23 2000 12 63.436507 449.794454
24 2001 12 999.472226 922.726589
Run Code Online (Sandbox Code Playgroud)
见?aggregate的formula论点和例子.
小智 48
使用data.table快速的包(对于较大的数据集很有用)
https://github.com/Rdatatable/data.table/wiki
library(data.table)
df2 <- setDT(df1)[, lapply(.SD, sum), by=.(year, month), .SDcols=c("x1","x2")]
setDF(df2) # convert back to dataframe
Run Code Online (Sandbox Code Playgroud)
使用plyr包
require(plyr)
df2 <- ddply(df1, c("year", "month"), function(x) colSums(x[c("x1", "x2")]))
Run Code Online (Sandbox Code Playgroud)
使用Hmisc包中的summarize()(虽然我的例子中列标题很乱)
# need to detach plyr because plyr and Hmisc both have a summarize()
detach(package:plyr)
require(Hmisc)
df2 <- with(df1, summarize( cbind(x1, x2), by=llist(year, month), FUN=colSums))
Run Code Online (Sandbox Code Playgroud)
Jaa*_*aap 46
随着dplyr包,您可以使用summarise_all,summarise_at或summarise_if功能,同时聚合多个变量.对于示例数据集,您可以按如下方式执行此操作:
library(dplyr)
# summarising all non-grouping variables
df2 <- df1 %>% group_by(year, month) %>% summarise_all(sum)
# summarising a specific set of non-grouping variables
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(x1, x2), sum)
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(-date), sum)
# summarising a specific set of non-grouping variables using select_helpers
# see ?select_helpers for more options
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(starts_with('x')), sum)
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(matches('.*[0-9]')), sum)
# summarising a specific set of non-grouping variables based on condition (class)
df2 <- df1 %>% group_by(year, month) %>% summarise_if(is.numeric, sum)
Run Code Online (Sandbox Code Playgroud)
后两种选择的结果:
year month x1 x2
<dbl> <dbl> <dbl> <dbl>
1 2000 1 -73.58134 -92.78595
2 2000 2 -57.81334 -152.36983
3 2000 3 122.68758 153.55243
4 2000 4 450.24980 285.56374
5 2000 5 678.37867 384.42888
6 2000 6 792.68696 530.28694
7 2000 7 908.58795 452.31222
8 2000 8 710.69928 719.35225
9 2000 9 725.06079 914.93687
10 2000 10 770.60304 863.39337
# ... with 14 more rows
Run Code Online (Sandbox Code Playgroud)
注意:summarise_each不赞成使用summarise_all,summarise_at和summarise_if.
正如我在上面的评论中所提到的,您也可以使用-package中的recast函数reshape2:
library(reshape2)
recast(df1, year + month ~ variable, sum, id.var = c("date", "year", "month"))
Run Code Online (Sandbox Code Playgroud)
这将给你相同的结果.
EDi*_*EDi 44
这个year()功能来自哪里?
您还可以使用该reshape2包执行此任务:
require(reshape2)
df_melt <- melt(df1, id = c("date", "year", "month"))
dcast(df_melt, year + month ~ variable, sum)
# year month x1 x2
1 2000 1 -80.83405 -224.9540159
2 2000 2 -223.76331 -288.2418017
3 2000 3 -188.83930 -481.5601913
4 2000 4 -197.47797 -473.7137420
5 2000 5 -259.07928 -372.4563522
Run Code Online (Sandbox Code Playgroud)
使用dplyr版本 >= 1.0.0,我们还可以使用summarise在多列上应用函数across
library(dplyr)\ndf1 %>% \n group_by(year, month) %>%\n summarise(across(starts_with('x'), sum))\n# A tibble: 24 x 4\n# Groups: year [2]\n# year month x1 x2\n# <dbl> <dbl> <dbl> <dbl>\n# 1 2000 1 11.7 52.9 \n# 2 2000 2 -74.1 126. \n# 3 2000 3 -132. 149. \n# 4 2000 4 -130. 4.12\n# 5 2000 5 -91.6 -55.9 \n# 6 2000 6 179. 73.7 \n# 7 2000 7 95.0 409. \n# 8 2000 8 255. 283. \n# 9 2000 9 489. 331. \n#10 2000 10 719. 305. \n# \xe2\x80\xa6 with 14 more rows\nRun Code Online (Sandbox Code Playgroud)\n
有趣的是,此处未展示base R aggregate的data.frame方法,而是在公式接口上方使用,因此出于完整性考虑:
aggregate(
x = df1[c("x1", "x2")],
by = df1[c("year", "month")],
FUN = sum, na.rm = TRUE
)
Run Code Online (Sandbox Code Playgroud)
聚合的data.frame方法的更通用用法:
由于我们提供了
data.frame作为x和list(data.frame也是a list)as by,如果我们需要以动态方式使用它(例如,使用其他列进行聚合和通过进行聚合)非常简单,这将非常有用例如这样:
colsToAggregate <- c("x1")
aggregateBy <- c("year", "month")
dummyaggfun <- function(v, na.rm = TRUE) {
c(sum = sum(v, na.rm = na.rm), mean = mean(v, na.rm = na.rm))
}
aggregate(df1[colsToAggregate], by = df1[aggregateBy], FUN = dummyaggfun)
Run Code Online (Sandbox Code Playgroud)