Jay*_*Jay 4 c# math binomial-coefficients
我需要n!/(n-r)!r!
用C#来计算.对于小数字,使用阶乘函数很容易计算,但是当数字变得像100那样大时,它就不起作用了.有没有其他方法可以计算更大数字的组合?
Eri*_*ert 17
首先,我注意到你正在尝试计算二项式系数,所以我们称之为.
以下是一些进行计算的方法.如果你使用BigInteger,你不必担心溢出:
方法一:使用阶乘:
static BigInteger Factorial(BigInteger n)
{
BigInteger f = 1;
for (BigInteger i = 2; i <= n; ++i)
f = f * i;
return f;
}
static BigInteger BinomialCoefficient(BigInteger n, BigInteger k)
{
return Factorial(n) / (Factorial(n-k) * Factorial(k));
}
Run Code Online (Sandbox Code Playgroud)
方法二:使用递归:
static BigInteger BinomialCoefficient(BigInteger n, BigInteger k)
{
if (n == 0) return 1;
if (k == 0) return 0;
return BinomialCoefficient(n-1, k-1) + BinomialCoefficient(n-1, k)
}
Run Code Online (Sandbox Code Playgroud)
但是,除非您记住结果,否则此方法并不快.
方法三:更加巧妙地减少乘法次数,并尽早划分.这使数字变小:
static BigInteger BinomialCoefficient(BigInteger n, BigInteger k)
{
// (n C k) and (n C (n-k)) are the same, so pick the smaller as k:
if (k > n - k) k = n - k;
BigInteger result = 1;
for (BigInteger i = 1; i <= k; ++i)
{
result *= n - k + i;
result /= i;
}
return result;
}
Run Code Online (Sandbox Code Playgroud)
因此,例如,如果你是计算(6 C 3),而不是计算(6 x 5 x 4 x 3 x 2 x 1)/((3 x 2 x 1)x(3 x 2 x 1)),你计算(((4/1)*5)/ 2)*6)/ 3,尽可能保持数字小.
按照埃里克(Eric)所说,尽早分配对您有很大帮助,您可以通过从高分到低分来改善这一点。这样,只要最终结果适合Long,就可以计算任何结果。这是我使用的代码(对Java表示歉意,但转换应该很容易):
public static long binomialCoefficient(int n, int k) {
// take the lowest possible k to reduce computing using: n over k = n over (n-k)
k = java.lang.Math.min( k, n - k );
// holds the high number: fi. (1000 over 990) holds 991..1000
long highnumber[] = new long[k];
for (int i = 0; i < k; i++)
highnumber[i] = n - i; // the high number first order is important
// holds the dividers: fi. (1000 over 990) holds 2..10
int dividers[] = new int[k - 1];
for (int i = 0; i < k - 1; i++)
dividers[i] = k - i;
// for every divider there always exists a highnumber that can be divided by
// this, the number of highnumbers being a sequence that equals the number of
// dividers. Thus, the only trick needed is to divide in reverse order, so
// divide the highest divider first trying it on the highest highnumber first.
// That way you do not need to do any tricks with primes.
for (int divider: dividers)
for (int i = 0; i < k; i++)
if (highnumber[i] % divider == 0) {
highnumber[i] /= divider;
break;
}
// multiply remainder of highnumbers
long result = 1;
for (long high : highnumber)
result *= high;
return result;
}
Run Code Online (Sandbox Code Playgroud)