假设A是一些方阵.如何在R中轻松取幂这个矩阵?
我已经尝试了两种方法:试用1使用for-loop hack和试验2更优雅但它仍然与A k简单相去甚远.
试验1
set.seed(10)
t(matrix(rnorm(16),ncol=4,nrow=4)) -> a
for(i in 1:2){a <- a %*% a}
Run Code Online (Sandbox Code Playgroud)
试用2
a <- t(matrix(c(0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0),nrow=4))
i <- diag(4)
(function(n) {if (n<=1) a else (i+a) %*% Recall(n-1)})(10)
Run Code Online (Sandbox Code Playgroud)
flo*_*del 14
如果A是可对角线的,您可以使用特征值分解:
matrix.power <- function(A, n) { # only works for diagonalizable matrices
e <- eigen(A)
M <- e$vectors # matrix for changing basis
d <- e$values # eigen values
return(M %*% diag(d^n) %*% solve(M))
}
Run Code Online (Sandbox Code Playgroud)
当A不可对角化时,矩阵M(特征向量矩阵)是单数.因此,使用它A = matrix(c(0,1,0,0),2,2)会给Error in solve.default(M) : system is computationally singular.
Ben*_*ker 12
该expm套餐有一个%^%运营商:
library("sos")
findFn("{matrix power}")
install.packages("expm")
library("expm")
?matpow
set.seed(10);t(matrix(rnorm(16),ncol=4,nrow=4))->a
a%^%8
Run Code Online (Sandbox Code Playgroud)
42-*_*42- 11
虽然Reduce更优雅,但for循环解决方案更快,似乎与expm ::%^%一样快
m1 <- matrix(1:9, 3)
m2 <- matrix(1:9, 3)
m3 <- matrix(1:9, 3)
system.time(replicate(1000, Reduce("%*%" , list(m1,m1,m1) ) ) )
# user system elapsed
# 0.026 0.000 0.037
mlist <- list(m1,m2,m3)
m0 <- diag(1, nrow=3,ncol=3)
system.time(replicate(1000, for (i in 1:3 ) {m0 <- m0 %*% m1 } ) )
# user system elapsed
# 0.013 0.000 0.014
library(expm) # and I think this may be imported with pkg:Matrix
system.time(replicate(1000, m0%^%3))
# user system elapsed
#0.011 0.000 0.017
Run Code Online (Sandbox Code Playgroud)
另一方面,matrix.power解决方案要慢得多:
system.time(replicate(1000, matrix.power(m1, 4)) )
user system elapsed
0.677 0.013 1.037
Run Code Online (Sandbox Code Playgroud)
@BenBolker是正确的(再次).当指数上升时,for循环在时间上呈线性,而expm ::%^%函数似乎甚至优于log(指数).
> m0 <- diag(1, nrow=3,ncol=3)
> system.time(replicate(1000, for (i in 1:400 ) {m0 <- m0 %*% m1 } ) )
user system elapsed
0.678 0.037 0.708
> system.time(replicate(1000, m0%^%400))
user system elapsed
0.006 0.000 0.006
Run Code Online (Sandbox Code Playgroud)