Ham*_*ams 10 c++ combinatorics binomial-coefficients
在这里,我尝试用C++编写程序来查找NCR.但是我在结果中遇到了问题.这是不正确的.你能帮我找一下程序中的错误吗?
#include <iostream>
using namespace std;
int fact(int n){
if(n==0) return 1;
if (n>0) return n*fact(n-1);
};
int NCR(int n,int r){
if(n==r) return 1;
if (r==0&&n!=0) return 1;
else return (n*fact(n-1))/fact(n-1)*fact(n-r);
};
int main(){
int n; //cout<<"Enter A Digit for n";
cin>>n;
int r;
//cout<<"Enter A Digit for r";
cin>>r;
int result=NCR(n,r);
cout<<result;
return 0;
}
Run Code Online (Sandbox Code Playgroud)
Ben*_*igt 27
你的公式是完全错误的,它应该是fact(n)/fact(r)/fact(n-r),但这反过来是一种非常低效的计算方法.
请参阅快速计算多类别组合数,尤其是我对该问题的评论.(哦,请重新打开这个问题,这样我就可以正确回答)
单分裂案例实际上非常容易处理:
unsigned nChoosek( unsigned n, unsigned k )
{
if (k > n) return 0;
if (k * 2 > n) k = n-k;
if (k == 0) return 1;
int result = n;
for( int i = 2; i <= k; ++i ) {
result *= (n-i+1);
result /= i;
}
return result;
}
Run Code Online (Sandbox Code Playgroud)
如果结果不合适,您可以计算对数之和,并将组合数量不精确地作为double.或者使用任意精度的整数库.
我在这里将解决方案放在另一个密切相关的问题上,因为ideone.com最近一直在丢失代码片段,另一个问题仍然是新答案.
#include <utility>
#include <vector>
std::vector< std::pair<int, int> > factor_table;
void fill_sieve( int n )
{
factor_table.resize(n+1);
for( int i = 1; i <= n; ++i )
factor_table[i] = std::pair<int, int>(i, 1);
for( int j = 2, j2 = 4; j2 <= n; (j2 += j), (j2 += ++j) ) {
if (factor_table[j].second == 1) {
int i = j;
int ij = j2;
while (ij <= n) {
factor_table[ij] = std::pair<int, int>(j, i);
++i;
ij += j;
}
}
}
}
std::vector<unsigned> powers;
template<int dir>
void factor( int num )
{
while (num != 1) {
powers[factor_table[num].first] += dir;
num = factor_table[num].second;
}
}
template<unsigned N>
void calc_combinations(unsigned (&bin_sizes)[N])
{
using std::swap;
powers.resize(0);
if (N < 2) return;
unsigned& largest = bin_sizes[0];
size_t sum = largest;
for( int bin = 1; bin < N; ++bin ) {
unsigned& this_bin = bin_sizes[bin];
sum += this_bin;
if (this_bin > largest) swap(this_bin, largest);
}
fill_sieve(sum);
powers.resize(sum+1);
for( unsigned i = largest + 1; i <= sum; ++i ) factor<+1>(i);
for( unsigned bin = 1; bin < N; ++bin )
for( unsigned j = 2; j <= bin_sizes[bin]; ++j ) factor<-1>(j);
}
#include <iostream>
#include <cmath>
int main(void)
{
unsigned bin_sizes[] = { 8, 1, 18, 19, 10, 10, 7, 18, 7, 2, 16, 8, 5, 8, 2, 3, 19, 19, 12, 1, 5, 7, 16, 0, 1, 3, 13, 15, 13, 9, 11, 6, 15, 4, 14, 4, 7, 13, 16, 2, 19, 16, 10, 9, 9, 6, 10, 10, 16, 16 };
calc_combinations(bin_sizes);
char* sep = "";
for( unsigned i = 0; i < powers.size(); ++i ) {
if (powers[i]) {
std::cout << sep << i;
sep = " * ";
if (powers[i] > 1)
std::cout << "**" << powers[i];
}
}
std::cout << "\n\n";
}
Run Code Online (Sandbox Code Playgroud)
The definition of N choose R is to compute the two products and divide one with the other,
(N * N-1 * N-2 * ... * N-R+1) / (1 * 2 * 3 * ... * R)
However, the multiplications may become too large really quick and overflow existing data type. The implementation trick is to reorder the multiplication and divisions as,
(N)/1 * (N-1)/2 * (N-2)/3 * ... * (N-R+1)/R
保证在每个步骤中结果都是可分的(对于n个连续的数字,其中一个必须被n整除,所以这些数字的乘积也是如此)。
例如,对于N选择3,N,N-1,N-2中的至少一个将为3的倍数,对于N选择4,N,N-1,N-2,N中的至少一个-3将是4的倍数。
下面给出的C ++代码。
int NCR(int n, int r)
{
if (r == 0) return 1;
/*
Extra computation saving for large R,
using property:
N choose R = N choose (N-R)
*/
if (r > n / 2) return NCR(n, n - r);
long res = 1;
for (int k = 1; k <= r; ++k)
{
res *= n - k + 1;
res /= k;
}
return res;
}
Run Code Online (Sandbox Code Playgroud)
使用double而不是int.
更新:
你的公式也是错误的。你应该使用fact(n)/fact(r)/fact(n-r)