SQL分类

bro*_*ozo 6 mysql sql algorithm classification document-classification

我有一个系统跟踪用户查看的文档.每个文档都有自己的ID和它所属的集群.我的系统跟踪会话ID和视图数量.我现在想构建一个SQL查询,它会给我两列 - 会话ID和分类集群.分类算法很简单:

1. select all sessions
2. for each session S
   I. prepare an accumulator ACC for clusters
   II. select the clusters of viewed documents for this session
   III. for each cluster C accumulate the cluster count ( ACC[C]++ )
   IV. find the maximum in the ACC. That is the cluster that the session was classified to
Run Code Online (Sandbox Code Playgroud)

表结构如下,我使用的是MySQL 5.5.16:

会议

+-------+-----------+--------------------+
| ID    | sessionID | classified_cluster |
+-------+-----------+--------------------+
Run Code Online (Sandbox Code Playgroud)

SessionDocument

+-------+-----------+------------+
| ID    | sessionID | documentID |
+-------+-----------+------------+
Run Code Online (Sandbox Code Playgroud)

+-------+-------+
| ID    | label |
+-------+-------+
Run Code Online (Sandbox Code Playgroud)

ClusterDocument

+-------+-----------+------------+
| ID    | clusterID | documentID |
+-------+-----------+------------+
Run Code Online (Sandbox Code Playgroud)

所以基本上,我想为每个会话选择群集,计算每个群集对于查看文档的出现次数并找到最大值.然后,发生最多的集群的ID是会话的结果,因此最终结果集保存会话ID和发生最多的集群:

结果

+-----------+-----------------------+
| sessionID | classifiedIntoCluster |
+-----------+-----------------------+
Run Code Online (Sandbox Code Playgroud)

我设法通过此查询获取每个会话的查看文档集群(步骤2/II.):

SELECT SD.session_id, CD.cluster_id 
FROM cluster_document AS CD 
INNER JOIN session_document AS SD 
ON CD.document_id = SD.document_id
WHERE session_id IN (SELECT session_id FROM session) 
Run Code Online (Sandbox Code Playgroud)

我无法弄清楚其余部分.嵌套的SELECT查询是否可以实现这一点?我应该使用光标吗?如果是的话,有人可以用光标显示示例吗?任何帮助都感激不尽.

编辑#1:添加了C#实现,MySQL转储和预期结果

C#实现

    private void ClassifyUsers() {
        int nClusters = Database.SelectClusterCount(); //get number of clusters
        DataSet sessions = Database.SelectSessions(); //get all sessions
        foreach (DataRow session in sessions.Tables[0].Rows) { //foreach session
           int[] acc = new int[nClusters]; //prepare an accumulator for each known cluster
           string s_id = session["session_id"].ToString();
           DataSet sessionClusters = Database.SelectSessionClusters(s_id); //get clusters for this session

           foreach (DataRow cluster in sessionClusters.Tables[0].Rows) { //for each cluster
               int c = Convert.ToInt32(cluster["cluster_id"].ToString()) - 1;
               acc[c]++; //accumulate the cluster count
           }

           //find the maximum in the accumulator -> that is the most relevant cluster
           int max = 0;
           for (int j = 0; j < acc.Length; j++) {
               if (acc[j] >= acc[max]) max = j;
           }
           max++;
           Database.UpdateSessionCluster(s_id, max); //update the session with its new assigned cluster
       }
    }
Run Code Online (Sandbox Code Playgroud)

表结构,测试数据和预期结果

表结构和测试数据

预期结果

编辑#2:添加了一个较小的数据集和进一步的算法演练

这是一个较小的数据集:

SESSION

session id    |  cluster
abc                 0
def                 0
ghi                 0
jkl                 0       
mno                 0
Run Code Online (Sandbox Code Playgroud)

cluster_id  | label
1               A
2               B
3               C
4               D
5               E
Run Code Online (Sandbox Code Playgroud)

SESSION_DOCUMENT

id      | session_id    |   document_id
1           abc             1
2           def             5
3           jkl             3
4           ghi             4
5           mno             2
6           def             2
7           abc             5
8           ghi             3
Run Code Online (Sandbox Code Playgroud)

CLUSTER_DOCUMENT

id      | cluster_id    |   document_id
1           1                  2
2           1                  3
3           2                  5
4           3                  5
5           3                  1
6           4                  3
7           5                  2
8           5                  4
Run Code Online (Sandbox Code Playgroud)

算法详细

第1步:获取会话查看的文档的集群

session_id  |  cluster_id   | label     | document_id   
abc             3               C           1
abc             2               B           5
abc             3               C           5
-----
def             2               B           5
def             3               C           5   
def             1               A           2
def             5               E           2   
----
ghi             5               E           4   
ghi             1               A           3   
ghi             4               D           3   
----
jkl             1               A           3   
jkl             4               D           3   
----
mno             1               A           2
mno             5               E           2
Run Code Online (Sandbox Code Playgroud)

第2步:计算集群的发生次数

session_id |    cluster_id  | label |   occurrence
abc             3               C           2   <--- MAX
abc             2               B           1
----
def             2               B           1
def             3               C           1   
def             1               A           1
def             5               E           1   <--- MAX
----
ghi             5               E           1   
ghi             1               A           1   
ghi             4               D           1   <--- MAX
----
jkl             1               A           1   
jkl             4               D           1   <--- MAX
----
mno             1               A           1   
mno             5               E           1   <--- MAX
Run Code Online (Sandbox Code Playgroud)

步骤3(最终结果):找到每个会话的最大发生集群(见上文)并构造最终结果集(session_id,cluster_id):

session_id |    cluster_id  
abc                 3           
def                 5
ghi                 4
jkl                 4
mno                 5
Run Code Online (Sandbox Code Playgroud)

编辑#3:接受的答案澄清

给出的答案都是正确的.它们都为问题提供了解决方案.我给了Mosty Mostacho接受的答案,因为他首先提供了解决方案并提供了另一个版本的解决方案VIEW.mankuTimma的解决方案与Mosty Mostacho的解决方案具有相同的质量.因此,我们有两个同样好的解决方案,我刚刚选择了Mosty Mostacho,因为他是第一个.

感谢他们两位的贡献..

Mos*_*cho 2

嗯,我对当有许多相等时如何选择出现有一些疑问,但查看 C# 代码,这种选择似乎是不确定的。

现在,给定样本数据,第 2 步实际上会产生:

+------------+------------+-------+------------+
| SESSION_ID | CLUSTER_ID | LABEL | OCCURRENCE |
+------------+------------+-------+------------+
| abc        |          3 | C     |          2 |
| def        |          1 | A     |          1 |
| def        |          2 | B     |          1 |
| def        |          3 | C     |          1 |
| def        |          5 | E     |          1 |
| ghi        |          1 | A     |          1 |
| ghi        |          4 | D     |          1 |
| ghi        |          5 | E     |          1 |
| jkl        |          1 | A     |          1 |
| jkl        |          4 | D     |          1 |
| mno        |          1 | A     |          1 |
| mno        |          5 | E     |          1 |
+------------+------------+-------+------------+
Run Code Online (Sandbox Code Playgroud)

因此,继续处理这些数据,我得到了该会话 ID 的 session_id 和 max(cluster_id),结果是:

+------------+------------+
| SESSION_ID | CLUSTER_ID |
+------------+------------+
| abc        |          3 |
| def        |          5 |
| ghi        |          5 |
| jkl        |          4 |
| mno        |          5 |
+------------+------------+
Run Code Online (Sandbox Code Playgroud)

max(cluster_id) 只是用来执行非确定性选择。这是查询:

select s1.session_id, max(s1.cluster_id) as cluster_id from (
  select sd.session_id, cd.cluster_id, count(*) as Occurrence
  from session_document sd
  join cluster_document cd
  on sd.document_id = cd.document_id
  join cluster c
  on c.cluster_id = cd.cluster_id
  group by sd.session_id, cd.cluster_id, c.label
) as s1
left join (
  select sd.session_id, count(*) as Occurrence
  from session_document sd
  join cluster_document cd
  on sd.document_id = cd.document_id
  join cluster c
  on c.cluster_id = cd.cluster_id
  group by sd.session_id, cd.cluster_id, c.label
) as s2
on s1.session_id = s2.session_id and s1.occurrence < s2.occurrence
where s2.occurrence is null
group by s1.session_id
Run Code Online (Sandbox Code Playgroud)

也许添加视图会提高性能(替换上述查询):

create view MaxOccurrences as (
  select sd.session_id, cd.cluster_id, count(*) as Occurrence
  from session_document sd
  join cluster_document cd
  on sd.document_id = cd.document_id
  join cluster c
  on c.cluster_id = cd.cluster_id
  group by sd.session_id, cd.cluster_id, c.label
);

select s1.session_id, max(s1.cluster_id) as cluster_id
from MaxOccurrences as s1
left join MaxOccurrences as s2
on s1.session_id = s2.session_id and s1.occurrence < s2.occurrence
where s2.occurrence is null
group by s1.session_id
Run Code Online (Sandbox Code Playgroud)

让我知道它是否有效。