为了与"只有一种明显的方法"相符,你如何在Numpy中获得向量(1D数组)的大小?
def mag(x):
return math.sqrt(sum(i**2 for i in x))
Run Code Online (Sandbox Code Playgroud)
上面的作品,但我不敢相信我必须自己指定这样一个琐碎的核心功能.
mat*_*fee 181
你所追求的功能是numpy.linalg.norm
.(我认为它应该在基础numpy中作为数组的属性 - 比如说x.norm()
- 但是很好).
import numpy as np
x = np.array([1,2,3,4,5])
np.linalg.norm(x)
Run Code Online (Sandbox Code Playgroud)
您也可以ord
为您想要的第n个订单提供可选项.说你想要1-norm:
np.linalg.norm(x,ord=1)
Run Code Online (Sandbox Code Playgroud)
等等.
use*_*424 87
如果你对速度感到担忧,你应该使用:
mag = np.sqrt(x.dot(x))
Run Code Online (Sandbox Code Playgroud)
以下是一些基准测试:
>>> import timeit
>>> timeit.timeit('np.linalg.norm(x)', setup='import numpy as np; x = np.arange(100)', number=1000)
0.0450878
>>> timeit.timeit('np.sqrt(x.dot(x))', setup='import numpy as np; x = np.arange(100)', number=1000)
0.0181372
Run Code Online (Sandbox Code Playgroud)
编辑:真正的速度改进来自你必须采取许多向量的规范.使用纯numpy函数不需要任何for循环.例如:
In [1]: import numpy as np
In [2]: a = np.arange(1200.0).reshape((-1,3))
In [3]: %timeit [np.linalg.norm(x) for x in a]
100 loops, best of 3: 4.23 ms per loop
In [4]: %timeit np.sqrt((a*a).sum(axis=1))
100000 loops, best of 3: 18.9 us per loop
In [5]: np.allclose([np.linalg.norm(x) for x in a],np.sqrt((a*a).sum(axis=1)))
Out[5]: True
Run Code Online (Sandbox Code Playgroud)
n8y*_*der 16
另一种方法是einsum
在numpy中使用这两个数组的函数:
In [1]: import numpy as np
In [2]: a = np.arange(1200.0).reshape((-1,3))
In [3]: %timeit [np.linalg.norm(x) for x in a]
100 loops, best of 3: 3.86 ms per loop
In [4]: %timeit np.sqrt((a*a).sum(axis=1))
100000 loops, best of 3: 15.6 µs per loop
In [5]: %timeit np.sqrt(np.einsum('ij,ij->i',a,a))
100000 loops, best of 3: 8.71 µs per loop
Run Code Online (Sandbox Code Playgroud)
或矢量:
In [5]: a = np.arange(100000)
In [6]: %timeit np.sqrt(a.dot(a))
10000 loops, best of 3: 80.8 µs per loop
In [7]: %timeit np.sqrt(np.einsum('i,i', a, a))
10000 loops, best of 3: 60.6 µs per loop
Run Code Online (Sandbox Code Playgroud)
但是,似乎有一些与调用它相关的开销可能会因为小输入而变慢:
In [2]: a = np.arange(100)
In [3]: %timeit np.sqrt(a.dot(a))
100000 loops, best of 3: 3.73 µs per loop
In [4]: %timeit np.sqrt(np.einsum('i,i', a, a))
100000 loops, best of 3: 4.68 µs per loop
Run Code Online (Sandbox Code Playgroud)
我发现最快的方法是通过inner1d.以下是它与其他numpy方法的比较:
import numpy as np
from numpy.core.umath_tests import inner1d
V = np.random.random_sample((10**6,3,)) # 1 million vectors
A = np.sqrt(np.einsum('...i,...i', V, V))
B = np.linalg.norm(V,axis=1)
C = np.sqrt((V ** 2).sum(-1))
D = np.sqrt((V*V).sum(axis=1))
E = np.sqrt(inner1d(V,V))
print [np.allclose(E,x) for x in [A,B,C,D]] # [True, True, True, True]
import cProfile
cProfile.run("np.sqrt(np.einsum('...i,...i', V, V))") # 3 function calls in 0.013 seconds
cProfile.run('np.linalg.norm(V,axis=1)') # 9 function calls in 0.029 seconds
cProfile.run('np.sqrt((V ** 2).sum(-1))') # 5 function calls in 0.028 seconds
cProfile.run('np.sqrt((V*V).sum(axis=1))') # 5 function calls in 0.027 seconds
cProfile.run('np.sqrt(inner1d(V,V))') # 2 function calls in 0.009 seconds
Run Code Online (Sandbox Code Playgroud)
inner1d比linalg.norm快3倍,头发比einsum快