使用PIL将RGBA PNG转换为RGB

Dan*_*gen 85 python png jpeg python-imaging-library rgba

我正在使用PIL将使用Django上传的透明PNG图像转换为JPG文件.输出看起来很糟糕.

源文件

透明的源文件

Image.open(object.logo.path).save('/tmp/output.jpg', 'JPEG')
Run Code Online (Sandbox Code Playgroud)

要么

Image.open(object.logo.path).convert('RGB').save('/tmp/output.png')
Run Code Online (Sandbox Code Playgroud)

结果

两种方式,生成的图像如下所示:

结果文件

有没有办法来解决这个问题?我想要有透明背景的白色背景.


感谢很棒的答案,我想出了以下函数集合:

import Image
import numpy as np


def alpha_to_color(image, color=(255, 255, 255)):
    """Set all fully transparent pixels of an RGBA image to the specified color.
    This is a very simple solution that might leave over some ugly edges, due
    to semi-transparent areas. You should use alpha_composite_with color instead.

    Source: http://stackoverflow.com/a/9166671/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """ 
    x = np.array(image)
    r, g, b, a = np.rollaxis(x, axis=-1)
    r[a == 0] = color[0]
    g[a == 0] = color[1]
    b[a == 0] = color[2] 
    x = np.dstack([r, g, b, a])
    return Image.fromarray(x, 'RGBA')


def alpha_composite(front, back):
    """Alpha composite two RGBA images.

    Source: http://stackoverflow.com/a/9166671/284318

    Keyword Arguments:
    front -- PIL RGBA Image object
    back -- PIL RGBA Image object

    """
    front = np.asarray(front)
    back = np.asarray(back)
    result = np.empty(front.shape, dtype='float')
    alpha = np.index_exp[:, :, 3:]
    rgb = np.index_exp[:, :, :3]
    falpha = front[alpha] / 255.0
    balpha = back[alpha] / 255.0
    result[alpha] = falpha + balpha * (1 - falpha)
    old_setting = np.seterr(invalid='ignore')
    result[rgb] = (front[rgb] * falpha + back[rgb] * balpha * (1 - falpha)) / result[alpha]
    np.seterr(**old_setting)
    result[alpha] *= 255
    np.clip(result, 0, 255)
    # astype('uint8') maps np.nan and np.inf to 0
    result = result.astype('uint8')
    result = Image.fromarray(result, 'RGBA')
    return result


def alpha_composite_with_color(image, color=(255, 255, 255)):
    """Alpha composite an RGBA image with a single color image of the
    specified color and the same size as the original image.

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """
    back = Image.new('RGBA', size=image.size, color=color + (255,))
    return alpha_composite(image, back)


def pure_pil_alpha_to_color_v1(image, color=(255, 255, 255)):
    """Alpha composite an RGBA Image with a specified color.

    NOTE: This version is much slower than the
    alpha_composite_with_color solution. Use it only if
    numpy is not available.

    Source: http://stackoverflow.com/a/9168169/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """ 
    def blend_value(back, front, a):
        return (front * a + back * (255 - a)) / 255

    def blend_rgba(back, front):
        result = [blend_value(back[i], front[i], front[3]) for i in (0, 1, 2)]
        return tuple(result + [255])

    im = image.copy()  # don't edit the reference directly
    p = im.load()  # load pixel array
    for y in range(im.size[1]):
        for x in range(im.size[0]):
            p[x, y] = blend_rgba(color + (255,), p[x, y])

    return im

def pure_pil_alpha_to_color_v2(image, color=(255, 255, 255)):
    """Alpha composite an RGBA Image with a specified color.

    Simpler, faster version than the solutions above.

    Source: http://stackoverflow.com/a/9459208/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """
    image.load()  # needed for split()
    background = Image.new('RGB', image.size, color)
    background.paste(image, mask=image.split()[3])  # 3 is the alpha channel
    return background
Run Code Online (Sandbox Code Playgroud)

性能

简单的非合成alpha_to_color功能是最快的解决方案,但留下了丑陋的边框,因为它不处理半透明区域.

纯PIL和numpy复合解决方案都能提供很好的结果,但alpha_composite_with_colorpure_pil_alpha_to_color(79.6毫秒)快得多(8.93 毫秒).如果你的系统上有numpy,那就是你要走的路. (更新:新的纯PIL版本是所有提到的解决方案中最快的.)

$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_to_color(i)"
10 loops, best of 3: 4.67 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_composite_with_color(i)"
10 loops, best of 3: 8.93 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color(i)"
10 loops, best of 3: 79.6 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color_v2(i)"
10 loops, best of 3: 1.1 msec per loop
Run Code Online (Sandbox Code Playgroud)

Yuj*_*ita 109

这是一个更简单的版本 - 不确定它的性能如何.基于我在RGBA -> JPG + BG为sorl缩略图构建支持时发现的一些django片段.

from PIL import Image

png = Image.open(object.logo.path)
png.load() # required for png.split()

background = Image.new("RGB", png.size, (255, 255, 255))
background.paste(png, mask=png.split()[3]) # 3 is the alpha channel

background.save('foo.jpg', 'JPEG', quality=80)
Run Code Online (Sandbox Code Playgroud)

结果@ 80%

在此输入图像描述

结果@ 50%
在此输入图像描述

  • 这段代码对我造成了错误:`元组索引超出范围`.我通过以下问题解决了这个问题(http://stackoverflow.com/questions/1962795/how-to-get-alpha-value-of-a-png-image-with-pil).我必须首先将PNG转换为RGBA,然后将其切片:`alpha = img.split()[ - 1]`然后在背景蒙版上使用它. (10认同)
  • 恭喜你弄清楚如何让`paste`做一个合适的混合. (2认同)

shu*_*ji3 27

通过使用Image.alpha_composite,Yuji'Tomita'Tomita的解决方案变得更加简单.tuple index out of range如果png没有alpha通道,此代码可以避免错误.

from PIL import Image

png = Image.open(img_path).convert('RGBA')
background = Image.new('RGBA', png.size, (255,255,255))

alpha_composite = Image.alpha_composite(background, png)
alpha_composite.save('foo.jpg', 'JPEG', quality=80)
Run Code Online (Sandbox Code Playgroud)

  • @logic1976 只需在保存之前添加 `.convert("RGB")` (3认同)
  • 当我使用此代码时,png对象的模式仍为“ RGBA” (2认同)

unu*_*tbu 13

透明部分大多具有RGBA值(0,0,0,0).由于JPG没有透明度,因此jpeg值设置为(0,0,0),即黑色.

在圆形图标周围,存在具有非零RGB值的像素,其中A = 0.因此它们在PNG中看起来是透明的,但在JPG中看起来很有趣.

您可以使用numpy将A == 0的所有像素设置为R = G = B = 255,如下所示:

import Image
import numpy as np

FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
x = np.array(img)
r, g, b, a = np.rollaxis(x, axis = -1)
r[a == 0] = 255
g[a == 0] = 255
b[a == 0] = 255
x = np.dstack([r, g, b, a])
img = Image.fromarray(x, 'RGBA')
img.save('/tmp/out.jpg')
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述


请注意,徽标还有一些半透明像素,用于平滑文字和图标周围的边缘.保存到jpeg会忽略半透明度,使得jpeg看起来很混乱.

使用imagemagick的convert命令可以获得更好的质量结果:

convert logo.png -background white -flatten /tmp/out.jpg
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述


要使用numpy制作更好的混合质量,可以使用alpha合成:

import Image
import numpy as np

def alpha_composite(src, dst):
    '''
    Return the alpha composite of src and dst.

    Parameters:
    src -- PIL RGBA Image object
    dst -- PIL RGBA Image object

    The algorithm comes from http://en.wikipedia.org/wiki/Alpha_compositing
    '''
    # http://stackoverflow.com/a/3375291/190597
    # http://stackoverflow.com/a/9166671/190597
    src = np.asarray(src)
    dst = np.asarray(dst)
    out = np.empty(src.shape, dtype = 'float')
    alpha = np.index_exp[:, :, 3:]
    rgb = np.index_exp[:, :, :3]
    src_a = src[alpha]/255.0
    dst_a = dst[alpha]/255.0
    out[alpha] = src_a+dst_a*(1-src_a)
    old_setting = np.seterr(invalid = 'ignore')
    out[rgb] = (src[rgb]*src_a + dst[rgb]*dst_a*(1-src_a))/out[alpha]
    np.seterr(**old_setting)    
    out[alpha] *= 255
    np.clip(out,0,255)
    # astype('uint8') maps np.nan (and np.inf) to 0
    out = out.astype('uint8')
    out = Image.fromarray(out, 'RGBA')
    return out            

FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
white = Image.new('RGBA', size = img.size, color = (255, 255, 255, 255))
img = alpha_composite(img, white)
img.save('/tmp/out.jpg')
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述