Fob*_*obi 33 c++ opencv stereoscopy 3d-modelling 3d-reconstruction
我是这个领域的新手,我正试图用2D图像中的3d模拟一个简单的场景,我没有关于相机的任何信息.我知道有3种选择:
我有两个图像,我知道我从XML加载的相机模型(intrisics)loadXMLFromFile()=> stereoRectify()=>reprojectImageTo3D()
我没有它们,但我可以校准我的相机=> stereoCalibrate()=> stereoRectify()=>reprojectImageTo3D()
我无法校准相机(这是我的情况,因为我没有拍摄2张图像的相机,然后我需要在SURF,SIFT两个图像上找到对关键点(我可以使用任何blob)实际上是检测器,然后计算这些关键点的描述符,然后根据它们的描述符匹配图像右侧和图像左侧的关键点,然后从它们中找到基本矩阵.处理更加困难,如下所示:
findFundamentalMat()从这些对中找到基本的mat()=>stereoRectifyUncalibrated() => reprojectImageTo3D()我正在使用最后一种方法,我的问题是:
1)是不是?
2)如果没问题,我对最后一步有疑问stereoRectifyUncalibrated()=> reprojectImageTo3D().reprojectImageTo3D()功能的签名是:
void reprojectImageTo3D(InputArray disparity, OutputArray _3dImage, InputArray Q, bool handleMissingValues=false, int depth=-1 )
cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true) (in my code)
Run Code Online (Sandbox Code Playgroud)
参数:
disparity - 输入单通道8位无符号,16位带符号,32位带符号或32位浮点差异图像._3dImage- 输出与3相同大小的3通道浮点图像disparity.每个元素_3dImage(x,y)包含(x,y)从视差图计算的点的3D坐标.Q- 可以获得的4x4透视变换矩阵stereoRectify().handleMissingValues - 指示函数是否应处理缺失值(即未计算差异的点).如果handleMissingValues=true,那么具有与异常值相对应的最小视差的像素(参见StereoBM::operator())被转换为具有非常大的Z值(当前设置为10000)的3D点.ddepth - 可选的输出数组深度.如果为-1,则输出图像将具有CV_32F深度.ddepth也可以设置为CV_16S,CV_32S或"CV_32F".我怎样才能得到Q矩阵?能够获得Q与矩阵F,H1并H2或以另一种方式?
3)是否有另一种方法可以在不校准摄像机的情况下获得xyz坐标?
我的代码是:
#include <opencv2/core/core.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/contrib/contrib.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <stdio.h>
#include <iostream>
#include <vector>
#include <conio.h>
#include <opencv/cv.h>
#include <opencv/cxcore.h>
#include <opencv/cvaux.h>
using namespace cv;
using namespace std;
int main(int argc, char *argv[]){
// Read the images
Mat imgLeft = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat imgRight = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
// check
if (!imgLeft.data || !imgRight.data)
return 0;
// 1] find pair keypoints on both images (SURF, SIFT):::::::::::::::::::::::::::::
// vector of keypoints
std::vector<cv::KeyPoint> keypointsLeft;
std::vector<cv::KeyPoint> keypointsRight;
// Construct the SURF feature detector object
cv::SiftFeatureDetector sift(
0.01, // feature threshold
10); // threshold to reduce
// sensitivity to lines
// Detect the SURF features
// Detection of the SIFT features
sift.detect(imgLeft,keypointsLeft);
sift.detect(imgRight,keypointsRight);
std::cout << "Number of SURF points (1): " << keypointsLeft.size() << std::endl;
std::cout << "Number of SURF points (2): " << keypointsRight.size() << std::endl;
// 2] compute descriptors of these keypoints (SURF,SIFT) ::::::::::::::::::::::::::
// Construction of the SURF descriptor extractor
cv::SurfDescriptorExtractor surfDesc;
// Extraction of the SURF descriptors
cv::Mat descriptorsLeft, descriptorsRight;
surfDesc.compute(imgLeft,keypointsLeft,descriptorsLeft);
surfDesc.compute(imgRight,keypointsRight,descriptorsRight);
std::cout << "descriptor matrix size: " << descriptorsLeft.rows << " by " << descriptorsLeft.cols << std::endl;
// 3] matching keypoints from image right and image left according to their descriptors (BruteForce, Flann based approaches)
// Construction of the matcher
cv::BruteForceMatcher<cv::L2<float> > matcher;
// Match the two image descriptors
std::vector<cv::DMatch> matches;
matcher.match(descriptorsLeft,descriptorsRight, matches);
std::cout << "Number of matched points: " << matches.size() << std::endl;
// 4] find the fundamental mat ::::::::::::::::::::::::::::::::::::::::::::::::::::
// Convert 1 vector of keypoints into
// 2 vectors of Point2f for compute F matrix
// with cv::findFundamentalMat() function
std::vector<int> pointIndexesLeft;
std::vector<int> pointIndexesRight;
for (std::vector<cv::DMatch>::const_iterator it= matches.begin(); it!= matches.end(); ++it) {
// Get the indexes of the selected matched keypoints
pointIndexesLeft.push_back(it->queryIdx);
pointIndexesRight.push_back(it->trainIdx);
}
// Convert keypoints into Point2f
std::vector<cv::Point2f> selPointsLeft, selPointsRight;
cv::KeyPoint::convert(keypointsLeft,selPointsLeft,pointIndexesLeft);
cv::KeyPoint::convert(keypointsRight,selPointsRight,pointIndexesRight);
/* check by drawing the points
std::vector<cv::Point2f>::const_iterator it= selPointsLeft.begin();
while (it!=selPointsLeft.end()) {
// draw a circle at each corner location
cv::circle(imgLeft,*it,3,cv::Scalar(255,255,255),2);
++it;
}
it= selPointsRight.begin();
while (it!=selPointsRight.end()) {
// draw a circle at each corner location
cv::circle(imgRight,*it,3,cv::Scalar(255,255,255),2);
++it;
} */
// Compute F matrix from n>=8 matches
cv::Mat fundemental= cv::findFundamentalMat(
cv::Mat(selPointsLeft), // points in first image
cv::Mat(selPointsRight), // points in second image
CV_FM_RANSAC); // 8-point method
std::cout << "F-Matrix size= " << fundemental.rows << "," << fundemental.cols << std::endl;
/* draw the left points corresponding epipolar lines in right image
std::vector<cv::Vec3f> linesLeft;
cv::computeCorrespondEpilines(
cv::Mat(selPointsLeft), // image points
1, // in image 1 (can also be 2)
fundemental, // F matrix
linesLeft); // vector of epipolar lines
// for all epipolar lines
for (vector<cv::Vec3f>::const_iterator it= linesLeft.begin(); it!=linesLeft.end(); ++it) {
// draw the epipolar line between first and last column
cv::line(imgRight,cv::Point(0,-(*it)[2]/(*it)[1]),cv::Point(imgRight.cols,-((*it)[2]+(*it)[0]*imgRight.cols)/(*it)[1]),cv::Scalar(255,255,255));
}
// draw the left points corresponding epipolar lines in left image
std::vector<cv::Vec3f> linesRight;
cv::computeCorrespondEpilines(cv::Mat(selPointsRight),2,fundemental,linesRight);
for (vector<cv::Vec3f>::const_iterator it= linesRight.begin(); it!=linesRight.end(); ++it) {
// draw the epipolar line between first and last column
cv::line(imgLeft,cv::Point(0,-(*it)[2]/(*it)[1]), cv::Point(imgLeft.cols,-((*it)[2]+(*it)[0]*imgLeft.cols)/(*it)[1]), cv::Scalar(255,255,255));
}
// Display the images with points and epipolar lines
cv::namedWindow("Right Image Epilines");
cv::imshow("Right Image Epilines",imgRight);
cv::namedWindow("Left Image Epilines");
cv::imshow("Left Image Epilines",imgLeft);
*/
// 5] stereoRectifyUncalibrated()::::::::::::::::::::::::::::::::::::::::::::::::::
//H1, H2 – The output rectification homography matrices for the first and for the second images.
cv::Mat H1(4,4, imgRight.type());
cv::Mat H2(4,4, imgRight.type());
cv::stereoRectifyUncalibrated(selPointsRight, selPointsLeft, fundemental, imgRight.size(), H1, H2);
// create the image in which we will save our disparities
Mat imgDisparity16S = Mat( imgLeft.rows, imgLeft.cols, CV_16S );
Mat imgDisparity8U = Mat( imgLeft.rows, imgLeft.cols, CV_8UC1 );
// Call the constructor for StereoBM
int ndisparities = 16*5; // < Range of disparity >
int SADWindowSize = 5; // < Size of the block window > Must be odd. Is the
// size of averaging window used to match pixel
// blocks(larger values mean better robustness to
// noise, but yield blurry disparity maps)
StereoBM sbm( StereoBM::BASIC_PRESET,
ndisparities,
SADWindowSize );
// Calculate the disparity image
sbm( imgLeft, imgRight, imgDisparity16S, CV_16S );
// Check its extreme values
double minVal; double maxVal;
minMaxLoc( imgDisparity16S, &minVal, &maxVal );
printf("Min disp: %f Max value: %f \n", minVal, maxVal);
// Display it as a CV_8UC1 image
imgDisparity16S.convertTo( imgDisparity8U, CV_8UC1, 255/(maxVal - minVal));
namedWindow( "windowDisparity", CV_WINDOW_NORMAL );
imshow( "windowDisparity", imgDisparity8U );
// 6] reprojectImageTo3D() :::::::::::::::::::::::::::::::::::::::::::::::::::::
//Mat xyz;
//cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true);
//How can I get the Q matrix? Is possibile to obtain the Q matrix with
//F, H1 and H2 or in another way?
//Is there another way for obtain the xyz coordinates?
cv::waitKey();
return 0;
}
Run Code Online (Sandbox Code Playgroud)
StereoRectifyUncalibrated计算简单的平面透视变换而不是对象空间中的整流变换.有必要将此平面变换转换为对象空间变换以提取Q矩阵,我认为它需要一些相机校准参数(如相机内在函数).可能有一些研究课题正在进行中.
您可能需要添加一些步骤来估算相机内在函数,并提取相机的相对方向以使您的流程正常工作.我认为如果没有使用主动照明方法,相机校准参数对于提取场景的正确三维结构至关重要.
还需要基于束块调整的解决方案来将所有估计值精确到更准确的值.