我需要以下帮助:我有一个数据文件(以"\ t"表格分隔的列),就像这样 data.dat
# y1 y2 y3 y4
17.1685 21.6875 20.2393 26.3158
Run Code Online (Sandbox Code Playgroud)
对于线性拟合,这些是4个点的x值.四个y值是常数:0, 200, 400, 600.
我可以创建点对的线性拟合(x,y):(x1,y1)=(17.1685,0), (x2,y2)=(21.6875,200), (x3,y3)=(20.2393,400), (x4,y4)=(26.3158,600).
现在我想对其中的三个巴黎进行线性拟合, (x1,y1), (x2,y2), (x3,y3) and (x2,y2), (x3,y3), (x4,y4) and (x1,y1), (x3,y3), (x4,y4) and (x1,y1), (x2,y2), (x4,y4).
如果我有三个线性拟合点,我想知道外推点的x值在这三个拟合点之外的值.
我到目前为止这个awk代码:
#!/usr/bin/awk -f
BEGIN{
z[1] = 0;
z[2] = 200;
z[3] = 400;
z[4] = 600;
}
{
split($0,str,"\t");
n = 0.0;
for(i=1; i<=NF; i++)
{
centr[i] = str[i];
n += 1.0;
# printf("%d\t%f\t%.1f\t",i,centr[i],z[i]);
}
# print "";
if (n > 2)
{
lsq(n,z,centr);
}
}
function lsq(n,x,y)
{
sx = 0.0
sy = 0.0
sxx = 0.0
syy = 0.0
sxy = 0.0
eps = 0.0
for (i=1;i<=n;i++)
{
sx += x[i]
sy += y[i]
sxx += x[i]*x[i]
sxy += x[i]*y[i]
syy += y[i]*y[i]
}
if ( (n==0) || ((n*sxx-sx*sx)==0) )
{
next;
}
# print "number of data points = " n;
a = (sxx*sy-sxy*sx)/(n*sxx-sx*sx)
b = (n*sxy-sx*sy)/(n*sxx-sx*sx)
for(i=1;i<=n;i++)
{
ycalc[i] = a+b*x[i]
dy[i] = y[i]-ycalc[i]
eps += dy[i]*dy[i]
}
print "# Intercept =\t"a"
print "# Slope =\t"b"
for (i=1;i<=n;i++)
{
printf("%8g %8g %8g \n",x[i],y[i],ycalc[i])
}
} # function lsq()
Run Code Online (Sandbox Code Playgroud)
所以,
If we extrapolate to the place of 4th
0 17.1685 <--(x1,y1)
200 21.6875 <--(x2,y2)
400 20.2393 <--(x3,y3)
600 22.7692 <<< (x4 = 600,y1 = 22.7692)
If we extrapolate to the place of 3th
0 17.1685 <--(x1,y1)
200 21.6875 <--(x2,y2)
400 23.6867 <<< (x3 = 400,y3 = 23.6867)
600 26.3158 <--(x4,y4)
0 17.1685
200 19.35266 <<<
400 20.2393
600 26.3158
0 18.1192 <<<
200 21.6875
400 20.2393
600 26.3158
Run Code Online (Sandbox Code Playgroud)
我目前的输出如下:
$> ./prog.awk data.dat
# Intercept = 17.4537
# Slope = 0.0129968
0 17.1685 17.4537
200 21.6875 20.0531
400 20.2393 22.6525
600 26.3158 25.2518
Run Code Online (Sandbox Code Playgroud)
假设函数中的核心计算lsq没问题(它看起来是正确的,但我还没有仔细检查过),那么这将为您提供最适合输入数据集的最小平方和线的斜率和截距(参数 x ,y,n)。我不确定我是否理解该函数的尾部。
对于“取三个点并计算第四个”问题,最简单的方法是生成 4 个子集(从逻辑上讲,通过在四个调用中的每一个调用中从四个点中删除一个点),然后重做计算。
您需要调用另一个函数,该函数从lsq另一个 y 值获取线数据(斜率、截距)并内插(外推)该值。这是一个直接的计算 ( x = m * y + c),但您需要确定y您传入的 3 个值中缺少哪个值。
您可以通过从“平方和”、“总和”和“乘积之和”值中一次删除一个值,重新计算斜率、截距,然后计算缺失值来“优化”(意思是“复杂化”)该方案再次指点。
(我还会观察到,通常情况下,x 坐标的固定值为 0、200、400、600,y 坐标为读取的值。但是,这只是方向问题,因此不是至关重要的。)
这是至少看似合理的工作代码。由于awk自动在空白处进行分割,因此无需专门在制表符上进行分割;读取循环考虑到了这一点。
代码需要认真重构;其中有大量的重复——然而,我也有一份我应该做的工作。
#!/usr/bin/awk -f
BEGIN{
z[1] = 0;
z[2] = 200;
z[3] = 400;
z[4] = 600;
}
{
for (i = 1; i <= NF; i++)
{
centr[i] = $i
}
if (NF > 2)
{
lsq(NF, z, centr);
}
}
function lsq(n, x, y)
{
if (n == 0) return
sx = 0.0
sy = 0.0
sxx = 0.0
syy = 0.0
sxy = 0.0
for (i = 1; i <= n; i++)
{
print "x[" i "] = " x[i] ", y[" i "] = " y[i]
sx += x[i]
sy += y[i]
sxx += x[i]*x[i]
sxy += x[i]*y[i]
syy += y[i]*y[i]
}
if ((n*sxx - sx*sx) == 0) return
# print "number of data points = " n;
a = (sxx*sy-sxy*sx)/(n*sxx-sx*sx)
b = (n*sxy-sx*sy)/(n*sxx-sx*sx)
for (i = 1; i <= n; i++)
{
ycalc[i] = a+b*x[i]
}
print "# Intercept = " a
print "# Slope = " b
print "Line: x = " a " + " b " * y"
for (i = 1; i <= n; i++)
{
printf("x = %8g, yo = %8g, yc = %8g\n", x[i], y[i], ycalc[i])
}
print ""
print "Different subsets\n"
for (drop = 1; drop <= n; drop++)
{
print "Subset " drop
sx = sy = sxx = sxy = syy = 0
j = 1
for (i = 1; i <= n; i++)
{
if (i == drop) continue
print "x[" j "] = " x[i] ", y[" j "] = " y[i]
sx += x[i]
sy += y[i]
sxx += x[i]*x[i]
sxy += x[i]*y[i]
syy += y[i]*y[i]
j++
}
if (((n-1)*sxx - sx*sx) == 0) continue
a = (sxx*sy-sxy*sx)/((n-1)*sxx-sx*sx)
b = ((n-1)*sxy-sx*sy)/((n-1)*sxx-sx*sx)
print "Line: x = " a " + " b " * y"
xt = x[drop]
yt = a + b * xt;
print "Interpolate: x = " xt ", y = " yt
}
}
Run Code Online (Sandbox Code Playgroud)
由于awk它没有提供从函数传回多个值的简单方法,也没有提供数组以外的结构(有时是关联的),因此它可能不是完成此任务的最佳语言。另一方面,它可以完成这项工作。您也许可以将最小二乘计算捆绑在一个函数中,该函数返回包含斜率和截距的数组,然后使用它。轮到你探索选项了。
给定显示的脚本lsq.awk和输入文件lsq.data,我得到显示的输出:
$ cat lsq.data
17.1685 21.6875 20.2393 26.3158
$ awk -f lsq.awk lsq.data
x[1] = 0, y[1] = 17.1685
x[2] = 200, y[2] = 21.6875
x[3] = 400, y[3] = 20.2393
x[4] = 600, y[4] = 26.3158
# Intercept = 17.4537
# Slope = 0.0129968
Line: x = 17.4537 + 0.0129968 * y
x = 0, yo = 17.1685, yc = 17.4537
x = 200, yo = 21.6875, yc = 20.0531
x = 400, yo = 20.2393, yc = 22.6525
x = 600, yo = 26.3158, yc = 25.2518
Different subsets
Subset 1
x[1] = 200, y[1] = 21.6875
x[2] = 400, y[2] = 20.2393
x[3] = 600, y[3] = 26.3158
Line: x = 18.1192 + 0.0115708 * y
Interpolate: x = 0, y = 18.1192
Subset 2
x[1] = 0, y[1] = 17.1685
x[2] = 400, y[2] = 20.2393
x[3] = 600, y[3] = 26.3158
Line: x = 16.5198 + 0.0141643 * y
Interpolate: x = 200, y = 19.3526
Subset 3
x[1] = 0, y[1] = 17.1685
x[2] = 200, y[2] = 21.6875
x[3] = 600, y[3] = 26.3158
Line: x = 17.7985 + 0.0147205 * y
Interpolate: x = 400, y = 23.6867
Subset 4
x[1] = 0, y[1] = 17.1685
x[2] = 200, y[2] = 21.6875
x[3] = 400, y[3] = 20.2393
Line: x = 18.163 + 0.007677 * y
Interpolate: x = 600, y = 22.7692
$
Run Code Online (Sandbox Code Playgroud)
编辑:在答案的先前版本中,子集乘以而n不是(n-1)。修改后的输出中的值似乎与您的期望一致。剩下的问题是表现性的,而不是计算性的。