Pun*_*nit 9 opencv object-detection sift
我在OpenCV中进行物体检测项目,包括将模板图像中的对象与参考图像进行匹配.使用SIFT算法,功能得到精确检测和匹配,但我想在匹配的功能周围使用直肠我的算法使用KD-Tree est ean First技术来获得匹配
我使用以下代码,改编自OpenCV中的SURF算法(modules/features2d/src/surf.cpp)来提取关键点的周围环境.
除了基于矩形和ROI的其他示例之外,此代码还根据由特征检测算法(KeyPoint结构中可用的)确定的方向和比例返回正确定向的补丁.
几个不同图像的检测结果示例:

const int PATCH_SZ = 20;
Mat extractKeyPoint(const Mat& image, KeyPoint kp)
{
int x = (int)kp.pt.x;
int y = (int)kp.pt.y;
float size = kp.size;
float angle = kp.angle;
int win_size = (int)((PATCH_SZ+1)*size*1.2f/9.0);
Mat win(win_size, win_size, CV_8UC3);
float descriptor_dir = angle * (CV_PI/180);
float sin_dir = sin(descriptor_dir);
float cos_dir = cos(descriptor_dir);
float win_offset = -(float)(win_size-1)/2;
float start_x = x + win_offset*cos_dir + win_offset*sin_dir;
float start_y = y - win_offset*sin_dir + win_offset*cos_dir;
uchar* WIN = win.data;
uchar* IMG = image.data;
for( int i = 0; i < win_size; i++, start_x += sin_dir, start_y += cos_dir )
{
float pixel_x = start_x;
float pixel_y = start_y;
for( int j = 0; j < win_size; j++, pixel_x += cos_dir, pixel_y -= sin_dir )
{
int x = std::min(std::max(cvRound(pixel_x), 0), image.cols-1);
int y = std::min(std::max(cvRound(pixel_y), 0), image.rows-1);
for (int c=0; c<3; c++) {
WIN[i*win_size*3 + j*3 + c] = IMG[y*image.step1() + x*3 + c];
}
}
}
return win;
}
Run Code Online (Sandbox Code Playgroud)
我不确定秤是否完全正常,但它是从SURF源获取的,结果看起来与我相关.
| 归档时间: |
|
| 查看次数: |
4523 次 |
| 最近记录: |