dai*_*ini 4 python coordinate-transformation
我想为此示例数据集执行转换.
在一个坐标[primary_system]系统中有四个已知点坐标x,y,z,并且接下来四个已知点具有属于另一个坐标系[secondary_system]的坐标x,y,h.那些点对应; 例如,primary_system1 point和secondary_system1点完全相同,但我们在两个不同的坐标系中有它的坐标.所以我在这里有四对调整点,并希望根据调整将另一个点坐标从主系统转换到二次系统.
primary_system1 = (3531820.440, 1174966.736, 5162268.086)
primary_system2 = (3531746.800, 1175275.159, 5162241.325)
primary_system3 = (3532510.182, 1174373.785, 5161954.920)
primary_system4 = (3532495.968, 1175507.195, 5161685.049)
secondary_system1 = (6089665.610, 3591595.470, 148.810)
secondary_system2 = (6089633.900, 3591912.090, 143.120)
secondary_system3 = (6089088.170, 3590826.470, 166.350)
secondary_system4 = (6088672.490, 3591914.630, 147.440)
#transform this point
x = 3532412.323
y = 1175511.432
z = 5161677.111<br>
Run Code Online (Sandbox Code Playgroud)
目前我尝试使用四对点中的每一对来平均x,y和z轴的平移,如:
#x axis
xt1 = secondary_system1[0] - primary_system1[0]
xt2 = secondary_system2[0] - primary_system2[0]
xt3 = secondary_system3[0] - primary_system3[0]
xt4 = secondary_system4[0] - primary_system4[0]
xt = (xt1+xt2+xt3+xt4)/4 #averaging
Run Code Online (Sandbox Code Playgroud)
...等等y轴和z轴
#y axis
yt1 = secondary_system1[1] - primary_system1[1]
yt2 = secondary_system2[1] - primary_system2[1]
yt3 = secondary_system3[1] - primary_system3[1]
yt4 = secondary_system4[1] - primary_system4[1]
yt = (yt1+yt2+yt3+yt4)/4 #averaging
#z axis
zt1 = secondary_system1[2] - primary_system1[2]
zt2 = secondary_system2[2] - primary_system2[2]
zt3 = secondary_system3[2] - primary_system3[2]
zt4 = secondary_system4[2] - primary_system4[2]
zt = (zt1+zt2+zt3+zt4)/4 #averaging
Run Code Online (Sandbox Code Playgroud)
所以上面我尝试计算每个轴的平均平移向量
如果它只是一个平移和旋转,那么这就是一个称为仿射变换的变换.
它基本上采取以下形式:
secondary_system = A * primary_system + b
Run Code Online (Sandbox Code Playgroud)
哪里A
是3x3矩阵(因为你是3D),并且b
是3x1平移.
这可以等效地写出来
secondary_system_coords2 = A2 * primary_system2,
Run Code Online (Sandbox Code Playgroud)
哪里
secondary_system_coords2
是矢量[secondary_system,1]
,primary_system2
是矢量[primary_system,1]
,和A2
是4x4矩阵:
[ A b ]
[ 0,0,0,1 ]
Run Code Online (Sandbox Code Playgroud)(有关详细信息,请参阅维基页面).
所以基本上,你想要解决这个等式:
y = A2 x
Run Code Online (Sandbox Code Playgroud)
for A2
,其中y
包括secondary_system
1个卡在末端的x
点,并且是primary_system
1个卡在末端的点,并且A2
是4x4矩阵.
现在,如果x
是方阵,我们可以解决它:
A2 = y*x^(-1)
Run Code Online (Sandbox Code Playgroud)
但是x
4x1.但是,你很幸运,有4套x
4对应的套装y
,所以你可以x
像这样构造一个4x4:
x = [ primary_system1 | primary_system2 | primary_system3 | primary_system4 ]
Run Code Online (Sandbox Code Playgroud)
其中每个primary_systemi
都是4x1列向量.与...相同y
.
一旦你有了A2
,将一个点从system1转换为系统2,你只需:
transformed = A2 * point_to_transform
Run Code Online (Sandbox Code Playgroud)
你可以numpy
像这样设置它(例如):
import numpy as np
def solve_affine( p1, p2, p3, p4, s1, s2, s3, s4 ):
x = np.transpose(np.matrix([p1,p2,p3,p4]))
y = np.transpose(np.matrix([s1,s2,s3,s4]))
# add ones on the bottom of x and y
x = np.vstack((x,[1,1,1,1]))
y = np.vstack((y,[1,1,1,1]))
# solve for A2
A2 = y * x.I
# return function that takes input x and transforms it
# don't need to return the 4th row as it is
return lambda x: (A2*np.vstack((np.matrix(x).reshape(3,1),1)))[0:3,:]
Run Code Online (Sandbox Code Playgroud)
然后像这样使用它:
transformFn = solve_affine( primary_system1, primary_system2,
primary_system3, primary_system4,
secondary_system1, secondary_system2,
secondary_system3, secondary_system4 )
# test: transform primary_system1 and we should get secondary_system1
np.matrix(secondary_system1).T - transformFn( primary_system1 )
# np.linalg.norm of above is 0.02555
# transform another point (x,y,z).
transformed = transformFn((x,y,z))
Run Code Online (Sandbox Code Playgroud)
注意:这里当然存在数值误差,这可能不是解决变换的最佳方法(您可能能够做某种最小二乘的事情).
此外,转换primary_systemx
为的错误secondary_systemx
(对于此示例)为10 ^( - 2).
你必须考虑这是否可以接受(它确实看起来很大,但与你的输入点相比可能是可以接受的,这些输入点都是10 ^ 6的顺序).