Eli*_*isa 6 combinations r unique
我的数据框看起来像这样:
ID | value 1 | value 2 | value 3 | value 4
1 | M | D | F | A
2 | F | M | G | B
3 | M | D | F | A
4 | L | D | E | B
Run Code Online (Sandbox Code Playgroud)
我想得到这样的东西.
value 1 | value 2 | value 3 | value 4| Number of combinations
M | D | F | A | 2
F | M | G | B | 1
L | D | E | B | 1
Run Code Online (Sandbox Code Playgroud)
例如,计算列值1 - 值4的唯一组合的数量.
koh*_*ske 12
count在plyr包中将完成该任务.
> df
ID value.1 value.2 value.3 value.4
1 1 M D F A
2 2 F M G B
3 3 M D F A
4 4 L D E B
> library(plyr)
> count(df[, -1])
value.1 value.2 value.3 value.4 freq
1 F M G B 1
2 L D E B 1
3 M D F A 2
Run Code Online (Sandbox Code Playgroud)
N <- 10000
d <- data.frame(
ID=seq(1, N),
v1=sample(c("M","F", "M", "L"), N, replace = TRUE),
v2=sample(c("D","M","D","D"), N, replace = TRUE),
v3=sample(c("F","G","F","E"), N, replace = TRUE),
v4=sample(c("A","B","A","B"), N, replace = TRUE)
)
Run Code Online (Sandbox Code Playgroud)
dt <- data.table::as.data.table(d)
dt[, .N, by = c('v1','v2','v3','v4')]
Run Code Online (Sandbox Code Playgroud)
dplyr::count_(d, vars = c('v1','v2','v3','v4'))
Run Code Online (Sandbox Code Playgroud)
plyr::count(d, vars = c('v1','v2','v3','v4'))
plyr::ddply(d, .variables = c('v1','v2','v3','v4'), nrow)
Run Code Online (Sandbox Code Playgroud)
aggregate(ID ~ ., d, FUN = length)
Run Code Online (Sandbox Code Playgroud)
microbenchmark::microbenchmark(dt[, .N, by = c('v1','v2','v3','v4')],
plyr::count(d, vars = c('v1','v2','v3','v4')),
plyr::ddply(d, .variables = c('v1','v2','v3','v4'), nrow),
dplyr::count_(d, vars = c('v1','v2','v3','v4')),
aggregate(ID ~ ., d, FUN = length),
times = 1000)
Unit: microseconds
expr min lq mean median uq max neval cld
dt[, .N, by = c("v1", "v2", "v3", "v4")] 887.807 1107.543 1263.777 1174.258 1289.724 4263.156 1000 a
plyr::count(d, vars = c("v1", "v2", "v3", "v4")) 3912.791 4270.387 5379.080 4498.053 5791.743 157146.103 1000 c
plyr::ddply(d, .variables = c("v1", "v2", "v3", "v4"), nrow) 7737.874 8553.370 10630.849 9018.266 11126.517 187301.696 1000 d
dplyr::count_(d, vars = c("v1", "v2", "v3", "v4")) 2126.913 2432.957 2763.499 2568.251 2789.386 12549.669 1000 b
aggregate(ID ~ ., d, FUN = length) 7395.440 8121.828 10546.659 8776.371 10858.263 210139.759 1000 d
Run Code Online (Sandbox Code Playgroud)
最好简单地使用data.table而不是data.frame最快,并且不需要其他函数或库来计算.另请注意,aggregate函数在大型数据集上的执行速度要慢得多.
最后注意事项:随意使用新方法进行更新.
没有plyr.
aggregate(ID ~ ., d, FUN=length)# . means all variables in d except ID
Run Code Online (Sandbox Code Playgroud)