也许你在找RegionPlot?
RegionPlot[(-1 + x)^2 + (-1 + y)^2 < 1 &&
x^2 + (-1 + y)^2 < 1 && (-1 + x)^2 + y^2 < 1 && x^2 + y^2 < 1,
{x, 0, 1}, {y, 0, 1}]
Run Code Online (Sandbox Code Playgroud)

注意在下面使用op_(曲线和交点只有一组方程式!):
t[op_] :=Reduce[op[(x - #[[1]])^2 + (y - #[[2]])^2, 1], y] & /@ Tuples[{0, 1}, 2]
tx = Texture[Binarize@RandomImage[NormalDistribution[1, .005], 1000 {1, 1}]];
Show[{
Plot[y /. ToRules /@ #, {x, 0, 1}, PlotRange -> {{0, 1}, {0, 1}}] &@ t[Equal],
RegionPlot[And @@ #, {x, 0, 1}, {y, 0, 1}, PlotStyle -> tx] &@ t[Less]},
Frame->True,AspectRatio->1,FrameStyle->Directive[Blue, Thick],FrameTicks->None]
Run Code Online (Sandbox Code Playgroud)

如果由于任何特殊原因,您想要在图片中使用虚线效果,您可以这样做:
pts = RandomReal[{0, 1}, {10000, 2}];
pts = Select[pts,
And @@ Table[Norm[# - p] < 1, {p,
{{0, 0}, {1, 0}, {1, 1}, {0, 1}}}] &];
Graphics[{Thick,
Line[{{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}],
Circle[{0, 0}, 1, {0, Pi/2}],
Circle[{1, 0}, 1, {Pi/2, Pi}],
Circle[{1, 1}, 1, {Pi, 3 Pi/2}],
Circle[{0, 1}, 1, {3 Pi/2, 2 Pi}],
PointSize[Small], Point[pts]
}]
Run Code Online (Sandbox Code Playgroud)

| 归档时间: |
|
| 查看次数: |
1938 次 |
| 最近记录: |