了解bigrams和trigrams的NLTK搭配评分

ccg*_*ett 23 python nlp nltk

背景:

我试图比较一对单词,看看哪一对在美国英语中比另一对更"可能发生".我的计划是使用NLTK中的搭配设施对单词对进行评分,评分最高的对是最有可能的.

做法:

我使用NLTK在Python中编写了以下代码(为简洁起见,删除了几个步骤和导入):

bgm    = nltk.collocations.BigramAssocMeasures()
finder = BigramCollocationFinder.from_words(tokens)
scored = finder.score_ngrams( bgm.likelihood_ratio  )
print scored
Run Code Online (Sandbox Code Playgroud)

结果:

然后我用两个单词对检查结果,其中一个应该很可能共同发生,一个不应该("烤腰果"和"汽油腰果").我惊讶地看到这些单词配对得分相同:

[(('roasted', 'cashews'), 5.545177444479562)]
[(('gasoline', 'cashews'), 5.545177444479562)]
Run Code Online (Sandbox Code Playgroud)

在我的测试中,我本以为"烤腰果"的得分高于"汽油腰果".

问题:

  1. 我误解了搭配的使用吗?
  2. 我的代码不正确吗?
  3. 我的假设是分数应该是不同的错误,如果是这样,为什么呢?

非常感谢您提供任何信息或帮助!

Rob*_*aus 31

NLTK搭配文件似乎对我很好. http://www.nltk.org/howto/collocations.html

您需要为得分手提供一些实际可用的大小语料库.这是一个使用内置于NLTK的Brown语料库的工作示例.运行大约需要30秒.

import nltk.collocations
import nltk.corpus
import collections

bgm    = nltk.collocations.BigramAssocMeasures()
finder = nltk.collocations.BigramCollocationFinder.from_words(
    nltk.corpus.brown.words())
scored = finder.score_ngrams( bgm.likelihood_ratio  )

# Group bigrams by first word in bigram.                                        
prefix_keys = collections.defaultdict(list)
for key, scores in scored:
   prefix_keys[key[0]].append((key[1], scores))

# Sort keyed bigrams by strongest association.                                  
for key in prefix_keys:
   prefix_keys[key].sort(key = lambda x: -x[1])

print 'doctor', prefix_keys['doctor'][:5]
print 'baseball', prefix_keys['baseball'][:5]
print 'happy', prefix_keys['happy'][:5]
Run Code Online (Sandbox Code Playgroud)

输出似乎合理,适用于棒球,对医生和快乐不太好.

doctor [('bills', 35.061321987405748), (',', 22.963930079491501), 
  ('annoys', 19.009636692022365), 
  ('had', 16.730384189212423), ('retorted', 15.190847940499127)]

baseball [('game', 32.110754519752291), ('cap', 27.81891372457088), 
  ('park', 23.509042621473505), ('games', 23.105033513054011), 
  ("player's",    16.227872863424668)]

happy [("''", 20.296341424483998), ('Spahn', 13.915820697905589), 
 ('family', 13.734352182441569), 
 (',', 13.55077617193821), ('bodybuilder', 13.513265447290536)
Run Code Online (Sandbox Code Playgroud)