我想计算向量中连续元素的最小数量,当添加(连续)时,它将小于给定值.
例如,在以下向量中
ev<-c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 2.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.27, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 370.33, 1375.4,
1394.03, 1423.8, 1360, 1269.77, 1378.8, 1350.37, 1425.97, 1423.6,
1363.4, 1369.87, 1365.5, 1294.97, 1362.27, 1117.67, 1026.97,
1077.4, 1356.83, 565.23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 356.83,
973.5, 0, 240.43, 1232.07, 1440, 1329.67, 1096.87, 1331.37, 1305.03,
1328.03, 1246.03, 1182.3, 1054.53, 723.03, 1171.53, 1263.17,
1200.37, 1054.8, 971.4, 936.4, 968.57, 897.93, 1099.87, 876.43,
1095.47, 1132, 774.4, 1075.13, 982.57, 947.33, 1096.97, 929.83,
1246.9, 1398.2, 1063.83, 1223.73, 1174.37, 1248.5, 1171.63, 1280.57,
1183.33, 1016.23, 1082.1, 795.37, 900.83, 1159.2, 992.5, 967.3,
1440, 804.13, 418.17, 559.57, 563.87, 562.97, 1113.1, 954.87,
883.8, 1207.1, 1046.83, 995.77, 803.93, 1036.63, 946.9, 887.33,
727.97, 733.93, 979.2, 1176.8, 1241.3, 1435.6)
Run Code Online (Sandbox Code Playgroud)
连续添加的元素的最小数量(如向量中的顺序)总和为20000
为了更清楚,我需要以下内容:从ev [1]开始并连续添加到20000.记录你必须添加的元素数量,以r00为1到20000.然后从ev [2]开始并添加到20000,依此类推.记录你必须添加到20000的元素数量为r [2].在ev的整个长度上这样做.然后返回min(r)
例如
j<-c(1, 2, 3, 5, 7, 9, 2).
我希望连续添加的最小元素数量可以让我们说> 20.这应该是3(5 + 7 + 9)
非常感谢
好吧,我会试一试:这个将找到加起来或以上的最小数字序列的长度max.它没有声称速度快,但它有O(2n)时间复杂性:-)
我让它返回起始索引和长度.
f <- function(x, max=10) {
s <- 0
len <- Inf
start <- 1
j <- 1
for (i in seq_along(x)) {
s <- s + x[i]
while (s >= max) {
if (i-j+1 < len) {
len <- i-j+1
start <- j
}
s <- s - x[j]
j <- j + 1
}
}
list(start=start, length=len)
# uncomment the line below if you don't need the start index...
#len
}
r <- f(ev, 20000) # list(start=245, length=15)
sum(ev[seq(r$start, len=r$length)]) # 20275.42
# Test speed:
x <- sin(1:1e6)
system.time( r <- f(x, 1.9) ) # 1.54 secs
# Compile the function makes it 9x faster...
g <- compiler::cmpfun(f)
system.time( r <- g(x, 1.9) ) # 0.17 secs
Run Code Online (Sandbox Code Playgroud)