Phy*_*win 25 python oop parallel-processing concurrency multiprocessing
我是python面向对象的新手,我将现有的应用程序重写为面向对象的版本,因为现在开发人员正在增加,我的代码变得无法维护.
通常我使用多处理队列,但我从这个例子http://www.doughellmann.com/PyMOTW/multiprocessing/basics.html发现我可以继承,multiprocessing.Process
所以我认为这是一个好主意,我写了一个类来测试这样:
码:
from multiprocessing import Process
class Processor(Process):
def return_name(self):
return "Process %s" % self.name
def run(self):
return self.return_name()
processes = []
if __name__ == "__main__":
for i in range(0,5):
p=Processor()
processes.append(p)
p.start()
for p in processes:
p.join()
Run Code Online (Sandbox Code Playgroud)
但是我无法取回值,我怎样才能以这种方式使用队列?
编辑:我想获得返回值并思考放在哪里Queues()
.
Mik*_*ton 40
multiprocessing.Process
:但是我无法取回值,我怎样才能以这种方式使用队列?
进程需要a Queue()
来接收结果......如何子类的示例multiprocessing.Process
如下...
from multiprocessing import Process, Queue
class Processor(Process):
def __init__(self, queue, idx, **kwargs):
super(Processor, self).__init__()
self.queue = queue
self.idx = idx
self.kwargs = kwargs
def run(self):
"""Build some CPU-intensive tasks to run via multiprocessing here."""
hash(self.kwargs) # Shameless usage of CPU for no gain...
## Return some information back through multiprocessing.Queue
## NOTE: self.name is an attribute of multiprocessing.Process
self.queue.put("Process idx={0} is called '{1}'".format(self.idx, self.name))
if __name__ == "__main__":
NUMBER_OF_PROCESSES = 5
## Create a list to hold running Processor object instances...
processes = list()
q = Queue() # Build a single queue to send to all process objects...
for i in range(0, NUMBER_OF_PROCESSES):
p=Processor(queue=q, idx=i)
p.start()
processes.append(p)
# Incorporating ideas from this answer, below...
# https://stackoverflow.com/a/42137966/667301
[proc.join() for proc in processes]
while not q.empty():
print "RESULT: {0}".format(q.get()) # get results from the queue...
Run Code Online (Sandbox Code Playgroud)
在我的机器上,这导致......
$ python test.py
RESULT: Process idx=0 is called 'Processor-1'
RESULT: Process idx=4 is called 'Processor-5'
RESULT: Process idx=3 is called 'Processor-4'
RESULT: Process idx=1 is called 'Processor-2'
RESULT: Process idx=2 is called 'Processor-3'
$
Run Code Online (Sandbox Code Playgroud)
multiprocessing.Pool
:FWIW,我发现子类化的一个缺点multiprocessing.Process
是你无法利用所有内置的优点multiprocessing.Pool
; Pool
如果您不需要生产者和消费者代码通过队列相互通信,那么会为您提供一个非常好的API .
您可以使用一些创意返回值做很多事情......在下面的示例中,我使用a dict()
封装来自pool_job()
...的输入和输出值
from multiprocessing import Pool
def pool_job(input_val=0):
# FYI, multiprocessing.Pool can't guarantee that it keeps inputs ordered correctly
# dict format is {input: output}...
return {'pool_job(input_val={0})'.format(input_val): int(input_val)*12}
pool = Pool(5) # Use 5 multiprocessing processes to handle jobs...
results = pool.map(pool_job, xrange(0, 12)) # map xrange(0, 12) into pool_job()
print results
Run Code Online (Sandbox Code Playgroud)
这导致:
[
{'pool_job(input_val=0)': 0},
{'pool_job(input_val=1)': 12},
{'pool_job(input_val=2)': 24},
{'pool_job(input_val=3)': 36},
{'pool_job(input_val=4)': 48},
{'pool_job(input_val=5)': 60},
{'pool_job(input_val=6)': 72},
{'pool_job(input_val=7)': 84},
{'pool_job(input_val=8)': 96},
{'pool_job(input_val=9)': 108},
{'pool_job(input_val=10)': 120},
{'pool_job(input_val=11)': 132}
]
Run Code Online (Sandbox Code Playgroud)
显然,还有许多其他改进pool_job()
,例如错误处理,但这说明了基本要素.仅供参考,这个答案提供了另一个如何使用的例子multiprocessing.Pool
.
归档时间: |
|
查看次数: |
25325 次 |
最近记录: |