我很确定我的事情变得复杂了.我有一个带p变量的数据框(这里v1是v3:)和两个因子变量(这里:sex和unemp):
> head(df)
sex unemp v1 v2 v3
1 0 0 2 4 4
2 0 0 2 1 1
3 1 0 3 3 5
4 1 1 2 3 5
5 0 0 1 2 5
6 1 0 3 5 4
Run Code Online (Sandbox Code Playgroud)
我现在想修改(即计算中位数和平均值,然后重新排列汇总表)我的数据,使得结果数据框看起来像这样(对于男性或女性):
> df.res.men
median.unemp.1 median.unemp.0 mean.unemp.1 mean.unemp.0
v1 2.0 2.0 2.666667 2.391304
v2 2.0 3.5 2.500000 3.369565
v3 4.5 3.0 4.166667 2.956522
Run Code Online (Sandbox Code Playgroud)
这是完整的代码:
library(plyr)
## generate data
set.seed(1)
df <- data.frame(sex=rbinom(100, 1, 0.5),
unemp=rbinom(100, 1, 0.2),
v1=sample(1:5, 100, replace=TRUE),
v2=sample(1:5, 100, replace=TRUE),
v3=sample(1:5, 100, replace=TRUE)
)
head(df)
## compute mean and median for all variables by sex and unemp
df.mean <- ddply(df, .(unemp, sex), .fun=colMeans, na.rm=TRUE)
df.mean
df.median <- ddply(df, .(unemp, sex), .fun=function(x)apply(x,2,median, na.rm=TRUE))
df.median
## rearrange summary table
df.res.men <- cbind(t(subset(df.median, sex==0 & unemp==1)),
t(subset(df.median, sex==0 & unemp==0)),
t(subset(df.mean, sex==0 & unemp==1)),
t(subset(df.mean, sex==0 & unemp==0)))
df.res.men <- df.res.men[-c(1:2),]
colnames(df.res.men) <- c("median.unemp.1", "median.unemp.0",
"mean.unemp.1", "mean.unemp.0")
df.res.men
Run Code Online (Sandbox Code Playgroud)
这是一种方法
library(plyr); library(reshape2)
dfm <- melt(df, id = c('sex', 'unemp'))
df2 <- ddply(dfm, .(variable, unemp, sex), summarize,
avg = mean(value), med = median(value))
df2m <- melt(df2, id = 1:3, variable.name = 'sum_fun')
df_0 <- dcast(df2m, sex + variable ~ sum_fun + unemp, subset = .(sex == 0))
sex variable avg_0 avg_1 med_0 med_1
1 0 v1 2.794872 3.0000 3 3.5
2 0 v2 3.102564 2.8750 3 3.0
3 0 v3 3.205128 3.1875 3 4.0
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
611 次 |
| 最近记录: |